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ACCELERATED VISCOELASTIC CHARACTERIZATION

OF T300/5208 GRAPHITE-EPOXY LAMINATES

(ABSTRACT)

The viscoelastic response of polymer-based composite

laminates, which may take years to develop in service, must

De anticipated and a_u_LLodated at _ __ _

Accelerated testing is therefore require_ to allow long-term

compliance predictions for composite laminates of arbitrary

layup, based solely upon short-term tests.

In this study, an accelerated viscoelastic

characterization scheme is applied to T300/5208 graphite-

epoxy laminates. The viscoelastic response of

unidirectional specimens is modeled using the theory

developed by Schapery. The transient component of the

viscoelastic creep compliance is assumed to follow a power

law approximation. A recursive relationship is developed,

based upon the Schapery single-integral equation, which

allows approximation of a continuous time-varying uniaxial

load using discrete steps in stress.

The viscoelastic response of T300/5208 graphite-epoxy at

149C to transverse normal and shear stresses is determined



using 90-deg and 10-deg off-axis tensile specimens,

respectively. In each case the seven viscoelastic material

parameters required in the analysis are determined

experimentally, using a short-term creep/creep recovery

testing cycle. A sensitivity analysis is used to select the

appropriate short-term test cycle. It is shown that an

accurate measure of the power law exponent is crucial for

accurate long-term predictions, and that the calculated

value of the power law exponent is very sensitive to slight

experimental error in recovery data. Based upon this

analysis, a 480/120 minute creep/creep recovery test cycle

is selected, and the power law exponent is calculated using

creep data. A short-term test cycle selection procedure is

proposed, which should provide useful guidelines when other

viscoelastic materials are being evaluated.

Results from the short-term tests on unidirectional

specimens are combined using classical lamination theory to

provide long-term predictions for symmetric composite

laminates. Experimental measurement of the long-term creep

compliance at 149C of two distinct T300/5208 laminates is

obtained. A reasonable comparison between theory and

experiment is observed at time up to 105 minutes.

Discrepancies which do exist are believed to be due to an

insufficient modeling of biaxial stress interactions, to the

accumulation of damage in the form of matrix cracks or
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voids, and/or to interlaminar shear deformations which may

occur due to viscoelastic effects or damage accumulation.
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I. INTRODUCTION

In recent years, the use of advanced continuous fiber

composite materials has expanded into a wide variety of

market places. Products that have been fabricated at least

in part from composite materials include military and

commercial aircraft, space vehicles, rocket motor cases,

turbine blades, automobile comDonents, pressure vessels, and

advanced composites will become an increasingly important

material system, competing favorably with the more

conventional structural materials such as steel or aluminum.

Perhaps the most attractive aspect of advanced composite

materials is their very high strength-to-weight and

stiffness-to-weight ratios. A modern design engineer must

be concerned with total system weight in order to remain

energy-efficient, and therefore composites are often ideal

material systems due to the potential weight savings alone.

However, composites offer other potential advantages over

conventional structural materials as well. As examples,

composites exhibit an improved resistance to fatigue

failure, an improved resistance to corrosion, and composite

laminates can be tailored to meet the strength, stiffness,



and thermal expansion characteristics required for a

specific design application.

The mechanical behaviour of polymer-based composites

differs from the behaviour of conventional structural

materials in a variety of ways, and a great deal of research

involving polymer-based composites is currently being

conducted. For the purposes of the present discussion,

these programs can be loosely grouped as those involving:

Orthotropic Effects. Composite lamina are highly

orthotropic in both stiffness and strength. As a

result, composite laminates may be quasi-isotropic,

orthotropic, or anisotropic, depending on layup.

Conversely, most conventional structural materials can

be considered isotropic in both stiffness and strength.

Environmental Effects. The mechanical behaviour of

composites can be dramatically affected by exposure to

a variety of environmental conditions. Conventional

structural materials can also be affected by

environmental conditions, but they are less sensitive

to many environmental conditions which are detrimental

to composites, e.g., moderately elevated temperatures

or ultraviolet radiation.

Viscoelastic Effects. Epoxy-matrix composites exhibit

significant viscoelastic or time-dependent effects,



again depending upon laminate layup and also upon

applied loading. This viscoelastic behaviour is often

closely related to the environmental effects mentioned

above. Conventional structural materials exhibit

significant viscoelastic behaviour only at very high

temperatures.

An important distinction to be made between these

research programs is that those which involve orthotropic

effects usually con_i_t of a study of some time-independent

phenomenon, whereas those involving environmental effects or

viscoelastic effects consist of a study of a time-dependent

phenomenon.

The orthotropic behaviour of composites has received the

most attention in the literature, and methods to describe

such behaviour have been proposed. As examples, the

orthotropic stiffness properties of a composite laminate of

arbitrary layup can be predicted through the use of

classical lamination theory (CLT). Strength predictions of

an arbitrary laminate can be obtained through the use of CLT

coupled with an orthotropic failure law such as the Tsai-

Hill failure criterion. Research in these areas is

continuing. Some additional topics of current interest are

interlaminar and free edge effects [1-5], buckling of

composite structures [6-8], and the dynamic response of

composite beams and plates [9,101.
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The effect of environment on composite materials is also

a very active area of current research. Some environmental

factors of concern are temperature, moisture, occasional

exposure to jet fuel or lubricants, and ultraviolet

radiation. Of particular interest at present are the

effects of moisture [11,12] and thermal spikes [13,14] on

the stiffness and strength of composite materials. These

studies are ultimately concerned with the long-term

integrity of composite structures subjected to typical in-

service environments.

The viscoelastic nature of composites is closely related

to the environmental considerations described above, since

many environmental conditions such as temperature or

humidity serve to accelerate the viscoelastic process. This

viscoelastic phenomenon can result in both a gradual

decrease in effective overall structural stiffness (perhaps

resulting in unacceptably large structural deformations) and

also in delayed failures, which might well occur weeks,

months, or years after initial introduction of a composite

structure into service. Thus, possible viscoelastic effects

must be considered over the entire life of a composite

structure.

The present study is the continuation of a combined

research effort by the Materials Science and Applications

Office of the NASA-Ames Research Center and the Engineering



Science and Mechanics Department at Virginia Polytechnic

Institute and State University. The research program has

focused on the last two areas of composite research

described above; environmental effects and viscoelastic

effects in laminated epoxy-matrix composite materials. The

work at NASA-Ames has been directed towards the effects of

moisture on the fatigue life of composites [15-17], while

the VPI&SU studies have been directed towards the

viscoelastic effects [18-22].

The present study will build on much of the previous

work conducted at VPI&SU involving the viscoelastic

characterization of uumpu_ite mate_ial_ _=__ .... _

review of the VPI&SU studies in this area will be presented

in the next section. This is followed by a section

describing the goals of the present study and the

integration of these goals with previous efforts at VPI&SU.

Previous Research at VPI&SU

The viscoelastic nature of composite materials provides

a unique challenge to the design engineer interested in

using these materials in load-bearing structural

applications. Namely, the long-term viscoelastic response

of the composite structure (which may take years to develop

in service) must be anticipated and accomodated at the



design stage. Obviously, it is impractical and

prohibitively expensive to perform prototype testing over

the total service times which might be involved, or even for

all of the laminate layups which might be considered. Some

form of accelerated testing/characterization is therefore

required which would allow long-term stiffness and strength

predictions for a composite laminate of arbitrary layup,

subjected to an arbitrary stress and temperature loading

history.

An accelerated characterization scheme was proposed by

Brinson, Morris, and Yeow in 1978 [23]. As originally

envisioned, the characterization procedure would utilize a

minimal amount of short-term testing, coupled with the time-

temperature superposition principle (TTSP) and CLT, to

predict long-term laminate behaviour. The procedure as

originally proposed is summarized in Figure I.I. The first

step in this proposed characterization process was to

determine the elastic constants of the unidirectional

composite lamina (EI,E2,GI2 , and _12 ) and the lamina failure

strengths (all , a2f ' and _12f) (A). The standard

transformation equations [24] were then used to obtain the

lamina modulii corresponding to any arbitrary fiber angle

(B), while a time independent failure theory was used to

obtain the failure strengths at these arbitrary fiber angles

(C). Creep tests were then performed to obtain the master
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PREDICTED LA_!INA ISTRENGTH VS.
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LONG-TE_! ?RED!CT i0._:S

(l)

Figure l.l" Flow Chart of the Proposed Procedure for
Laminate Accelerated Characterization and
Failure Prediction [23]
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curves and shift functions vs. temperature associated with

the TTSP (D). These results were used to establish the

functional relationship between fiber angle and shift

function (E). Once the shift function and modulii for any

arbitrary fiber angle were determined, a modulus master

curve for arbitrary temperature and fiber angle was

generated, again using TTSP (F). A strength master curve

was obtained for arbitrary temperature and fiber angle by

using the same shift functions obtained from the modulus

tests, with the implicit assumption that lamina strength

varied in a manner similar to the modulii (G). Finally, the

modulus and strength master curves at arbitrary temperature

and fiber angles were merged in incremental fashion using

CLT (H), which allows prediction of long-term laminate

response. The accuracy of the above analysis was checked by

actual long-term tests of a few selected composite laminates

(1).

A great deal of research involving the accelerated

characterization of composites has been performed since

1978. Extensive creep and creep rupture studies have been

conducted using the graphite-epoxy composite material system

T300/934. These tests were conducted at a variety of stress

levels ranging from a few hundred psi to ultimate strength

levels, and at a variety of temperatures ranging from room

temperature to temperatures near the glass transition



temperature (Tg) of the epoxy matrix. Creep tests for

0-deg, 90-deg and 10-deg off-axis T300/934 specimens have

been performed, as well as tests involving a variety of

symmetric laminate layups. Perhaps the most important

conclusions reached during these studies on T300/934 are:

* The fiber-dominated modulus E1 is essentially time-

independent [25]. Step (D) therefore requires creep

tests to obtain master curves for E2 and GI2 only.

* The principal compliance matrix used in the modulus

transformation equations remains symmetric even after

viscoelastic deformation with time [25]. Step (B) is

therefore valid.

* The shift function associated with the WLF equation 1

(step E) is independent of fiber angle [25]. This same

conclusion has also been reported elsewhere [26].

The assumption that lamina strength varies in a manner

similar to the modulii (step G) remains a reasonable but

unproven assumption for T300/934 graphite-epoxy. A major

difficulty encountered in assessing this concept has been

I. The WLF equation will be defined in Chapter II.
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the collection of consistent creep rupture data.

Considerable data have been collected, but excessive scatter

prevents any conclusive interpretations. However, evidence

supporting this assumption has been reported in reference

[27], where experimental data are presented indicating that

the fracture shift factors obtained for both a neat resin

matrix and a graphite-epoxy composite were nearly identical

to the compliance shift factors obtained using the same two

materials.

The overall conclusion reached during the VPI&SU studies

is that the accelerated characterization plan depicted in

Figure I.I can be used to provide reasonably accurate

predictions of long-term laminate response, at least for the

T300/934 material system studied.

During the course of these studies, it became desirable

to modify the proposed characterization plan by replacing

the TTSP with some other viscoelastic modeling technique,

for two reasons. First, Ferry reports [28] that the TTSP

was proposed by Leaderman in 1943 as an empirical curve-

fitting procedure. Since that time a theoretical basis for

the TTSP has been developed, but only for linear

viscoelastic behaviour, and only for temperatures at or

above the T of the material. Composites are used for
g

structural applications at temperatures well below their Tg

to preserve structural rigidity. Additionally, nonlinear
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viscoelastic behaviour has been observed for composites,

particularily in shear [18,22,29]. Therefore, even though

the TTSP appears to provide reasonably accurate predictions

for composites, the use of the TTSP under the present

conditions is not rigorously justified. Secondly, the

conventional TTSP is a graphical procedure, requiring

horizontal and vertical shifts of the experimental data to

provide smooth uniform master curves. Producing these

master curves is a tedious, time-consuming process which is

subject to graphical error. Also. the amount _n_ type ef

vertical shifting required depends upon the specific

material system being studied, and no general rule exists

for all materials which might be considered [19]. Hence, the

TTSP is unwieldy when compared to other available

viscoelastic models which are readily adapted to computer

automation.

Two viscoelastic models were considered as replacements

for the TTSP. These models were the theory proposed by

Findley [30-32] and the theory proposed by Schapery [33-35].

The Findley theory is essentially empirical, whereas the

Schapery theory can be derived using the concepts of

irreversible thermodynamics. It has recently been pointed

out that the Schapery theory can be considered to be an

analytic form of the Time-Stress Superposition Principle

(TSSP) [22]. Both the Findley and Schapery theories are
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relatively simple to apply and have been successfully used

to model a variety of materials. The model selected was

eventually determined by the available data base. That is,

the Findley theory requires only creep data to obtain the

various material parameters involved, whereas the Schapery

theory requires both creep and creep recovery data. Since

the existing data base contained only creep data, the

Findley theory was chosen to replace the TTSP, with the

recommendation that the Schapery theory be included in

future research endeavors.

An automated accelerated characterization scheme was

developed [21], and a computer program called VISLAP was

written which incorporates the accelerated characterization

scheme described above. The program provides long-term

predictions of the creep compliance and creep rupture times

for composite laminates of arbitrary layup. VISLAP was

modified for use during the present study, and details of

the program structure will be given in Chapter III.

Typical predictions of long-term creep compliance which

were obtained during previous efforts [21] are presented in

Figure 1.2 for a [30/-60]_s T300/934 laminate at 160C

(320F). Note that while the predictions are for several

decades of time, actual experimental data exist for only

about 30 minutes. The Findley parameters used to produce

these curves are shown in Figure 1.3. As can be seen, the
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instantaneous response, Zo' and the power law coefficient,

m, vary in a smooth and uniform manner. The power law

exponent, n, was expected to remain constant with stress but

experimental values show a significant scatter. An average

value for n was eventually used in the study. An analysis

of the power law showed that this instability was due to a

singularity in n [21]. The experimental data fell near this

singularity, and hence the evaluation of the power law

exponent was very sensitive to small errors in the

experimental data.

Predictions for creep rupture times are shown in Figure

I._, again for a [30/-6014 s T300/93_ laminate at 160C [21].

In general, the creep rupture data were characterized by

significant scatter, which was mainly attributed to

differences in the material properties of the composite

panels used in the study. A major contributor may have been

that the same postcure thermal treatment was not used for

all specimens, which would have caused considerable

differences in the viscoelastic response from specimen to

specimen. In most cases, the predicted rupture times were

conservative, although in some cases overly so.

Although the Schapery theory was not used in the

computer program VISLAP, it has since been successfully used

at VPI&SU to characterize the viscoelastic behaviour of

polycarbonate [36], bulk samples of FM-73 structural
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adhesive [37], and unidirectional laminates of T300/93_

[22]. Since the Schapery theory is derived directly from

the principles of irreversible thermodynamics, it is

somewhat more appealing than the purely empirical Findley

equations. In addition, it accounts for some aspects of

nonlinear viscoelastic behaviour which the Findley equations

cannot model. Therefore, one of the objectives of the

present study was to integrate the Schapery theory with the

accelerated characterization scheme, and in particular to

insert the Schapery equations into the computer proqram

VISLAP.

It is evident from the above discussion that the process

of accelerated characterization as applied at VPI&SU has

been refined considerably since initiation of the program.

The original accelerated characterization scheme previously

illustrated in Figure I.I was based almost exclusively on

the TTSP; subsequently several other viscoelastic and

delayed failure models have been utilized. As a result, the

procedure depicted in Figure i.I no longer accurately

reflects the accelerated characterization procedure used at

VPI&SU. The more general approach which has evolved has

been discussed in Reference 38. An updated diagram

illustrating the accelerated characterization procedure is

given in Figure 1.5. As indicated, the fundamental concept

remains; to use short-term data obtained from unidirectional



18

I
Short Term Lamina

(_0°),(90 o)

Creep Compliance Testing

S(t, O, T, M,...)

Short Term Lamina

(0°),(10°),(90 °)
Constant Strain Rate Tests

O-,.E, T, _'(t, T, M,...) l
Short Term Lamina

(10°),(90 °)

Delayed Failures Testing

tr(d , T, M,...)

TTSSP,

Findley,

Schapery,

Long Term Lamina
Compliance Master

Curve and Analytical
Constitutive Model

Modified

Tsai-Hill-

Zhurkov-Crochet,

Long Term Lamina

Strength Master Curve

and Analytical Delayed
Failure Model

Incremental Lamination

Theory, Finite Element

I General Laminate i
= Predictions

Figure 1.5: Current Accelerated Characterization Procedure
Used at VPI&SU



19

composite specimens to predict the long-term behaviour of

composite laminates of arbitrary layup.

Objectives of Present Study

The present

continuation of

described above.

research project is essentially a

the accelerated characterization study

It was felt that previous studies had

validated the concept of accelerated characterization, but a

further refinement of the technique in terms of a more

accurate compliance model and improved testing procedures

was required. In addition, previous efforts focused

exclusively on T300/934 graphite-epoxy. A different

material system was selected for use in the present study;

T300/5208 graphite-epoxy. This system was used because its

viscoelastic behaviour had not been studied previously at

VPI&SU. The intent was to validate the accelerated

characterization method by ascertaining if it would be

applicable to a new material system. Successful application

would serve to indicate whether the method could be

confidently applied to arbitrary reinforced plastics in

general as well as T300/934 in particular.

Based upon these general guidelines, the following six

program objectives were identified:
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(I) The integration of the Schapery nonlinear viscoelastic

theory with the accelerated characterization procedure.

This principally involved modification of the computer

program VISLAP, including additions and improvements to two

subroutines, called INPUT and VISCO, and the creation of a

new subroutine containing the Schapery equations, called

SCHAP.

(2) To perform a numerical study of the sensitivity of the

Findley/Schapery viscoelastic parameters to slight

experimental error in strain measurement. As indicated in

Figure 1.3, the experimentally determined values for the

power law exponent n have been subject to significant

scatter. Similar scatter has also been reported for the

Schapery parameters determined using similar experimental

procedures [37]. While a percentage of this scatter was

undoubtedly due to actual differences in mechanical

behaviour from specimen-to-specimen, there was some

indication that it was also in part due to a very high

sensitivity to experimental error which was accentuated by

the particular creep and/or creep recovery testing schedule

being employed.

(3) To develop a standard methodology in selecting a

creep and/or creep recovery testing schedule. This

methodology was to be based upon the results of objective
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(2), and it was expected that the procedure developed would

be applicable to any viscoelastic material system, and not

just graphite-epoxy composites.

(4) To apply the accelerated characterization procedure

to the T300/5208 graphite-epoxy material system. The testing

program used was to be based upon the guidelines developed

as objective (3). Short-term creep and creep recovery tests

were to be performed on 90-deg and 10-deg off-axis

specimens, at an ambient temperature of 149C (300F). This

data would then be used with the Droqram VISLAP to Generate

long-term compliance predictions.

(5) To obtain long-term experimental measurement of the

creep compliance of two distinct T300/5208 laminates at 149C

(300F). In previous studies at VPI&SU, compliance

measurements were obtained for a maximum time of only 104

minutes (6.9 days). Therefore, it was felt that compliance

measurements at longer times were required to provide a more

rigorous check of predicted long-term behaviour. The two

distinct laminate layups were to be selected such that the

stress state applied to each layup and hence the

viscoelastic response would be significantly different for

each layup. Since there was no existing equipment available

for such a test, it was also required to design and

fabricate a multiple-station creep frame for this purpose.
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(6) To compare the long-term experimental measurements

obtained as objective (5) with the long-term predictions

obtained as objective (4). The accuracy of the predictions

at very long times was of particular interest, as was

whether a conservative prediction of compliance at

relatively short times remained a conservative prediction at

very long times.

Background information related to the present study is

given in Chapter II, including brief reviews of viscoelastic

theory and classical lamination theory. The efforts to

achieve each of the above objectives are described in

Chapters III through VIII', followed by a summary and

conclusions discussion presented in Chapter IX.



II. BACKGROUND INFORMATION

The Theory of Viscoelasticity

Viscoelasticity is the study of materials whose

mechanical properties exhibit both a time-dependency and a

memory effect. For example, if a tensile specimen of a

viscoelastic material is subjected to a constant uniaxial

load, the specimen will "creep", and the apparent Young's

modulus will steadily decrease with time (or equivalently,

th_ apparent compliance of the material will steadily

increase with time). The viscoelastic material will

initially remain in a deformed state after unloading, but

will "remember" its original configuration and with time

will tend to "recover" back towards that configuration.

It is apparent from this definition that many time-

dependent phenomena are not necessarily viscoelastic. The

mechanical properties of an epoxy change with time during

the curing process, for example, but this time-dependency is

due to permanent microstructural changes in the molecular

chains of the epoxy. Once the cure is complete, there is no

tendency for the epoxy to return to its former state, and

hence there is no memory effect. Thus, for a phenomenon to

be considered viscoelastic, both time-dependency and memory

effects must be exhibited.

23
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Three types of experimental tests commonly employed to

characterize viscoelastic materials might be considered for

use during the present study. These are the creep/creep

recovery test, the stress relaxation test, and the constant

strain rate test. The creep/creep recovery test is

illustrated in Figure 2.1. A uniaxial step load is applied

to the specimen, resulting in an axial stress which is held

constant for a time t I. If the test material is

viscoelastic, the specimen "creeps" for times in the range

of 0 < t < t I After time t I the load is removed and the

viscoelastic material "recovers" towards its initial

configuration.

Strain and stress histories for a stress relaxation test

are illustrated in Figure 2.2. In this test, a uniaxial

step deformation is applied to the specimen, resulting in an

axial strain which is held constant for the duration of the

test. The applied deformation induces an initial axial

stress _ which slowly "relaxes" with time.o

The constant strain rate test is illustrated in Figure

2.3. The specimen is subjected to an axial strain which is

increased at some constant rate R, and the axial stress

induced within the specimen is monitored. If the test

material is viscoelastic, the induced stress will not

increase linearly with time, as indicated.

In the present study, the creep/creep recovery test was
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used almost exclusively to characterize viscoelastic

material behaviour, primarily because creep/creep recovery

tests are the easiest to perform. Constant strain rate tests

were used occasionally to obtain "instantaneous" modulii,

but were not used to obtain any viscoelastic parameters.

The stress relaxation test was not used in this study.

Viscoelastic materials are sometimes loosely grouped as

viscoelastic "solids" or viscoelastic "fluids". The

distinction between these two materi_l types is illustrated

in Figure 2.4 for a creep/creep recovery test cycle. For a

viscoelastic solid, the creep strain increases from the

initial value _ towards an asymptotic value c , and the
o

creep strain rate tends towards zero as time increases.

Upon unloading, the recovery strains return asymptotically

to zero.

For a viscoelastic fluid, the creep strains do not reach

an asymptotic limiting value, and the creep strain rate

tends towards a constant as time increases. Upon unloading,

the recovery strains return asymptotically to some permanent

non-zero strain level, Ef.

As is the case for elastic materials, viscoelastic

materials may be further classified as either linear or

nonlinear materials. There are a variety of methods which

may be used to distinguish between linear and nonlinear

viscoelastic behaviour. A typical technique is illustrated
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in Figure 2.5, where "isochronous" (i.e., constant time)

stress-strain curves are shown for both linear and nonlinear

materials. These curves would be generated using data

collected during several creep tests. Nonlinear behaviour

is readily identified using this technique, as shown.

The mathematical modeling of viscoelastic behaviour is

complicated considerably by nonlinear behaviour. As a

result, the theory of linear viscoelasticity is very well

developed and understood, while nonlinear viscoelasticity

theory has received attention only relatively recently and

is not as well developed nor understood.

In the present effort, the theory of viscoelasticity

will be used to characterize the epoxy matrix used in a

composite laminate. An important property which impacts the

viscoelastic behaviour of all polymeric materials is the

glass transition temperature (Tg). As the temperature of a

polymeric material is raised through the Tg, the elastic

modulus can decrease by a factor of 103 or greater. At

temperatures well below the Tg, polymers are generally very

brittle, exhibiting little or no viscoelastic response. At

temperatures above the Tg, polymers are extremely ductile

and "rubbery", exhibiting considerable viscoelastic

behaviour. This dramatic change in material behaviour

occurs over a narrow temperature range, on the order of 6C

(10F). For epoxies, the T is usually about 160C (320F).
g
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The amount and type (i.e., linear or nonlinear, solid or

fluid) of viscoelastic behaviour which is exhibited by

polymeric materials is dependent upon a variety of factors,

including stress level, temperature, previous thermal

history, humidity, and molecular structure.

Linear Viscoelasticity.

Mechanical Models. Perhaps the most familiar concept of

linear viscoelasticity is the use of mechanical analogies to

model viscoelastic behaviour. The two simplest mechanical

models are the Kelvin (or Voigt) element and the Maxwell

element. Both elements are simple combinations of a Hookean

solid (modeled as a linear spring of stiffness k) and a

Newtonian viscous fluid (modeled as a linear dashpot of

viscosity _), as shown in Figure 2.6. Note that for a

constant creep load the deformation of the Kelvin element is

limited by the elastic spring, and therefore the Kelvin

element behaves as a viscoelastic solid. In contrast, for a

constant creep load, the deformation of the Maxwell element

is not bounded, due to the continued deformation of the

ideal dashpot. The Maxwell element therefore behaves as a

viscoelastic fluid.

It is easily shown that if at time t = 0 a Kelvin

element is suddenly subjected to a constant creep stress _o'

the resulting strain response is given by
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k

a) Kelvin Viscoelastic Element

k

b) Maxwell Viscoelastic Element

Figure 2.6: Simple Mechanical Analogies Used to Model
Viscoelastic Behaviour
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(_0 -t/T)
=-V (i - e

where

- _ - the "retardation time"
k

A typical viscoelastic response for a Kelvin element is

shown in Figure 2.7. Note that the retardation time _ is

determined by the viscosity and stiffness values selected

for the dashpot and spring, respectively.

In an analogous fashion, the stress within a Maxwell

element which is induced by a suddenly applied constant

strain ¢o is given by

a(t) = k e e
o

where

-- _ -- the "relaxation time"
k

Again, the relaxation time is defined by the viscosity and

stiffness values selected.

The behaviour of many viscoelastic materials cannot be

modeled by using a single Kelvin or Maxwell element, but can

be accurately modeled using the "generalized" Kelvin or

Maxwell models. The generalized Kelvin and Maxwell models,

shown in Figure 2.8, are composed of many (in some cases an



35

I

i

I
I
I
I
I
I
I
I
I
I
I
I
I

0

0

_J
E
.r..-

0

0

O

0

c5

II

t)0 .._

II

h_

o_

E

c-

f,...

0
4_

¢1

c-
O

°r.-

0

.t-

.r-
e_

I'-"

°0

P_

M



36

k I k 2 k 3 k i

Ii

Ul _2 _3 _i

a) Generalized Kelvin Model

Ul kl

U2 k2

u3 k3

T ui ki T

b) Generalized Maxwell Model

Figure 2.8" Generalized Viscoelastic Models
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infinite number of) Kelvin or Maxwell elements, acting in

concert. For a generalized Kelvin model there is not a

single retardation time, but rather many retardation times

distributed over several decades in time. Furthermore, a

distinct contribution to compliance can be associated with

each retardation time. The distribution of these compliance

increments over time is called the retardation spectrum and

is usually written L(_), where L(_) has units of area/force.

In an analogous fashion, the generalized Maxwell model

possesses many relaxation times, and a distinct contribution

to stiffness can be associated with each relaxation time.

The distribution of these stiffness increments over time is

called the relaxation spectrum and is usually written H(_),

where H(_) has units of force/area. In principle, the

behaviour of any viscoelastic material can be modeled using

the generalized Kelvin or Maxwell models with an infinite

number of elements by simply imposing the appropriate

retardation or relaxation spectrums. A schematic

representation of a continuous retardation spectrum is shown

in Figure 2.9. There are also several molecular theories

which can be used to approximate the continuous viscoelastic

spectra with discrete spectrum lines [28,39], in which case

a finite number of Kelvin or Maxwell units is used. For

example, the creep response of a generalized Kelvin model

consisting of n Kelvin elements is given by
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n

_(t) --_0 _ k7.1(i - e-t/Ti)
i=l I

As mentioned above, the Kelvin element is associated

with the behaviour of a viscoelastic solid and the Maxwell

model is associated with the behaviour of a viscoelastic

fluid. However, the generalized Kelvin model can be used to

model a material exhibiting short-term solid behaviour with

long-term fluid behaviour by simply removing an elastic

_i_, creating = _== dashpot in one Kelvin unit.

Similarly, the generalized Maxwell model can be used to

model short-term fluid behaviour and long-term solid

behaviour by removing a linear dashpot in one Maxwell unit.

Boltzman Superposition Principle. The response of a linear

viscoelastic material to some arbitrary stress history can

be obtained by approximating the stress history using a

series of distinct steps in stress, as shown in Figure 2.10.

The strain history is given approximately by

z(t) = D(t)c 0 + D(t-tl)(Cl-C0) + D(t-t2)(c2-Cl)

+ ..... + D(t-ti)(ci-ci_l)

where:

(2.1)

D(t) = the appropriate material compliance function

The approximation is, of course, improved as the increments

in time (t i - ti_l) are made smaller and smaller. In the
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limit eq. 2.1 becomes exact and may be written as

e(t) = D(t - T) da
0- _- dT

(2.2)

Equation 2.2 is the well-known Boltzman Superpo sition

Principle, which gives the strain response for a linear

viscoelastic material to an arbitrary stress input. Note

that it has been assumed that the material has experienced

no previous stress or strain histories, i.e., o = _ = 0 for

--_ < t < O.

Time-Temperature Superposition Principle. As discussed in

Chapter I, the time-temperature superposition principle

(TTSP) was proposed by Leaderman in 1943 [28]. The TTSP is

also referred to as the "method of reduced variables" by

some researchers. This principle is of fundamental

importance to the present investigation because it is an

accelerated characterization procedure which has been

extensively studied and successfully used for a wide variety

of viscoelastic materials. The validity of the TTSP is

therefore firmly established, lending credibility to the

present efforts to characterize composite materials using an

accelerated characterization scheme.

The steps in data reduction involved in the use of the

TTSP are summarized in Figure 2.11 for the case of stress

relaxation [40]. Short-term stress relaxation data are



42

o % o o o o £ o

UJOlseu£p(,_)_-q
Z

o

i_..i

o

v_

ul

QJ
u
o
L

o-

¢:
o

,_-.

o
I..t_

o-

I--
I--

..

I-..,-

O4

f...

I.l-



43

obtained at a series of increasing temperatures, as shown at

the left of Figure 2.11. The short-term test duration is as

long as is convenient, perhaps ranging from a few minutes to

104 minutes (6.9 days). A reference temperature is then

selected, and a "master curve" is generated by shifting each

of the short-term test results horizontally left or right

until a smooth curve is produced. In general, short-term

data obtained at temperatures lower than the reference

temperature are shifted to the left, while data obtained at

temperatures higher than the reference temperature are

shifted to the right. The master curve is therefore

associated with the particular reference temperature

selected, and a different master curve would be obtained if

a different reference temperature is used.

The horizontal distance each curve is shifted is equal

to the log of the so-called "temperature shift factor", a T ,

and has also been plotted as a function of temperature in

Figure 2.11. At temperatures above the glass transition

temperature (Tg), a T can often be accurately calculated

using the Williams-Landel-Ferry (WLF) equation [28]

- C 1 (T - T )
o (2.3)

log a T = C 2 + T - T o

C 1 and C 2 are constants for the particular material being

investigated and T is a reference temperature greater than
o

or equal to the T of the material. It has been empirically
g
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observed that for many polymeric materials the WLF equation

can be written

- 17.44 (T - T )
$ (2.4)log aT = 51.6 + T - T

g

where in equation 2.4:

T > T
g

T, T in degrees Kelvin
g

C1 = 17.44

C2 = 51.6

A material which can be characterized as described above

is referred to as a "thermorheologically simple material"

(TSM). For many materials a master curve cannot be formed

by means of simple horizontal shifting alone, however, and

some vertical shifting of the short-term data prior to

horizontal shifting is required. In these cases, the

material is referred to as a "thermorheologically complex

material" (TCM). Vertical shifting is often associated with

environmental effects such as temperature or humidity and

also with a nonlinear dependence on stress. Vertical and

horizontal shifting procedures have been extensively

reviewed by Griffith, et al [19], and will not be discussed

in greater detail here. It should be noted however that

vertical shifting introduces a significant complication in

the use of the TTSP, and is a major reason why alternate
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accelerated characterization schemes have been pursued at

VPI&SU.

The Findley Power Law Equation. It has been empirically

observed that the creep compliance function for many

linearly viscoelastic polymeric materials can be accurately

modeled using a power law of the form

where

D(t) = A + Btn

A, B, n = material constants

t = time after creep loading

(2.5)

For a creep test, the stress history may be expressed as

where

c = co H(t), and therefore

dc
- c 6(t)

dt o (2.6)

c = constant
o

H(t) = the Heaviside unit step

_0, t < 0
function

, t > 0

dH(t) _
6(t) -

dt
the Kronecker-Delta

_, t = 0
function

O, t#O

Substituting equations 2.5 and 2.6 into equation 2.2 results

in the so-called "Findley power law equation":
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wher e

E(t) = _O + mtn

¢ =A co o

m= B c
o

Note from these definitions

considered material constants.

(2.7)

that ¢ and m are also
o

Equation 2.7 has been used by Findley and his co-workers

to successfully characterize the viscoelastic behaviour of a

variety of amorphous, crystalline, and crosslinked polymers.

As presented here, it is valid only for linearly

viscoelastic behaviour. However, Findley has presented a

slightly modified form of eq. 2.7 for use with nonlinear

viscoelastic materials. This nonlinear Findley power law

will be described in the next section.

Nonlinear Viscoelasticity

Mechanical Models. It is theoretically possible to modify

the linear generalized Kelvin or Maxwell models to account

for nonlinear viscoelastic behaviour through the use of

nonlinear springs and/or dashpots. Since the retardation

(relaxation) times _. for the Kelvin (Maxwell) model are
1

equal to the ratio _i/ki, this implies that _i is not a

constant for each Kelvin (Maxwell) element but rather a
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function of stress level. Alternatively, nonlinear behaviour

can be introduced through the use of nonlinearizing

functions of stress as follows

where

n

iI 1 1 e-t/Ti)e(t) = _0 _ (i - fi(OO)

fi(CO) = nonlinearizing functions of stress

Hiel et al report [22] that Bach has used this approach to

model the nonlinear viscoelastic behaviour of wood.

Generalized mechanical models are rather cumbersome even in

the linear case however, and have not been used to model

nonlinear behaviour to any great extent.

Multiple-Integral Approaches. The viscoelastic constitutive

equation relating the strain and stress tensors can be

written in the most general form as

eij(t) = Fijkl [Okl(T)]

T=O

where

zij(t), Ckl(_) = strain and stress tensors,

respectively

Fijkl = continuous nonlinear compliance tensor

t = present time

= arbitrary time

(2 .S)
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Equation 2.8 implies that the current strain state is

dependent upon the entire previous stress history, i.e.,

from 0 < _ < t. Thus, a material which can be described by

eq. 2.8 exhibits a memory effect and is viscoelastic.

In a series of publications [41-43], Green, Rivlin, and

Spencer presented an analysis which shows that eq. 2.8 can

be approximated to any degree of accuracy by a series of

multiple-integrals. This approach involves the use of

convoluted integrals containing n-th order terms of stress.

The final multiple-integral expression for three-dimensional

stress states is quite lengthy and will not be presented

here. A simpler expression derived by Onaran and Findley

[44] will be used to illustrate the fundamental concept.

Their expression is applicable for a uniaxial stress, and

only two orders of stress are retained. Using this approach

the following relation is obtained

z(t) = (t-_) a(_) d_ +

I t I t _2(t__,t_m) [c(%) ]2 dmd% +
0 0

2 (t-_l,t-_2)O(_l)C(_2) d_ld_ 2 (2.9)
0

The functions _1 and _2 which appear in eq. 2.9 are called

kernel functions and must be determined experimentally. If

a third order of stress were used in the derivation of eq.

2.9, a triple integral would appear involving a third kernel
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function _3" Therefore, the number of tests required to

characterize a viscoelastic material using this technique

depends upon both the type of loading and the desired degree

of accuracy. If a general three-dimensional stress state

were assumed and only the first, second, and third orders of

stress terms are retained, there are still thirteen

independent kernel functions which must be evaluated. This

requires over I00 tests involving various combinations of

uniaxial, biaxial, and triaxial loading conditions. Such

extensive and difficult testing is impractical in most

instances. The multiple-integral approach has therefore not

been used to any extent in practice, even though it is

probably one of the most accurate and versatile nonlinear

viscoelastic theories available.

The Nonlinear Findley Power Law Equation. The linear

Findley power law was described in the previous paragraph

and is given by eq. 2.7. As discussed, the parameters _o' m,

and n are considered material constants for the linear case.

In the nonlinear case, these parameters are not constant

with stress, but rather are assumed to follow an expression

of the form

= ' sinh (alaE)E 0 E 0

m = m' sinh (a/am)

n = constant

(2.10)
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where

¢' o m' o = material constantso' ' ' m

By substituting eqs. 2.10 into eq. 2.7 the nonlinear Findley

power law equation is obtained

!

e(t) = e sinh (o/_ e) + m't n sinh (o/_) (2. ii)
O m

In eq. 2.11 the nonlinear dependence upon stress is assumed

to follow a hyperbolic sine variation in stress. Apparently

this assumption was originally based upon empirical

observation, although theoretical justification has since

been suggested [21,34,39]. This approach has been used

successfully by Findley and his coworkers to characterize

the viscoelastic response of many materials, including

canvas, paper, and asbestos laminates [30,31],

polyvinylchloride [32,44,45], and polyethylene,

monochlorotriflouroethylene, and polystyrene [45].

Equation 2.11 was developed for the case of constant

uniaxial creep loadings. Findley has also extended this

concept to account for nonlinear viscoelastic response to a

varying uniaxial load. This technique is called the Modified

Superposition Principle (MSP), and has been applied by

Findley et al to many of the materials mentioned above

[30,32,45]. More recently, MSP has been applied by Dillard

et al to characterize T300/934 graphite/epoxy laminates

[21], and by Yen to characterize SMC-R50 sheet molding
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compound [46].

The Modified Superposition Principle will be illustrated

by considering the nonlinear viscoelastic response to a two-

step uniaxial loading. Consider the creep response at time

t 2 of a material which has been subjected to a constant

stress a I from time t = 0 to t = tl, and subsequently to a

second stress a2 from time t I to t 2. According to the MSP

the creep response at time t2 is equal to the sum of the

creep response due to o I from t = 0 to t = t I and the creep

response due to (_2 - al) from t = t I to t = t 2. Hence, by

using eq. 2.11, the creep response at time t 2 as predicted

by the MSP is given by

e(t 2) = e'o sinh (OllOe) + m' t2 sinh (Ol/Om)

+ e' sinh
o i 2-l-m,sinhi_i _ n _2 - _i]

(2.12)

The Schapery Nonlinear Single-Integral Theory. As mentioned

in Chapter I, Schapery's nonlinear single-integral

viscoelastic theory can be derived from fundamental

principles using the concepts of irreversible thermodynamics

[33,34]. A thorough review of the thermodynamic basis of the

Schapery theory was recently presented by Hiel et al [22].

In the present study, the Schapery theory was integrated

with the accelerated characterization scheme developed
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during previous research "efforts at VPI&SU [21]. A detailed

description of the Schapery equations and the application of

these equations during the present study will be presented

in Chapter III, so further discussion of the Schapery theory

will be delayed until that point.

Classical Lamination Theory

A composite "lamina" or "ply" is a single membrane of

composite material in which strong and stiff, continuous

(i.e., very long) fibers have been embedded within a

relatively weak and flexible "matrix" material. All fibers

are aligned in the same direction, and the matrix serves to

bind the individual fibers together to form a single unit.

For polymer-matrix composites, laminae thicknesses are

usually on the order of 0.13 mm (0.005 inch). A composite

"laminate" is the bonded assemblage of several layers of

composite laminae. The number of laminae or plies within a

laminate can vary from a very few (say 4 or 5) to very many

(say 150), depending upon application.

Since all fibers within a lamina are orientated in the

same direction, a lamina is highly orthotropic and exhibits

very high strength and stiffness properties parallel to the

fibers and very low strength and stiffness properties

perpendicular to the fiber direction. A composite laminate
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is therefore normally designed so that fiber orientation

relative to some reference direction varies from ply-to-ply,

providing good overall strength and stiffness

characteristics in more than one direction. An eight-ply

composite laminate is shown schematically in Figure 2.12.

This laminate is described as a [0/9012s laminate, meaning

that the O-deg/90-deg lamina pairs are repeated twice and

symmetrically about the middle surface of the laminate.

Note that the individual ply directions are referenced to

the x-axis.

Since a composite laminate may consist of any number of

plies, and each ply may be orientated in a different

direction, some method of predicting the overall elastic

mechanical properties of the laminate based upon the

properties of a single ply is required. Such a method has

been developed and is known as "classical lamination theory"

(CLT). The principal assumptions made in CLT are the plane-

stress assumption and the Kirchoff hypothesis, i.e., a line

which is initially straight and normal to the laminate

middle surface is assumed to remain straight and normal to

the middle surface after deformation. In addition, no out-

of-plane extensional strains are considered. A brief review

of the conventional equations used in CLT will be given

below. Notation will follow that of Jones [24].

A composite lamina is shown schematically in Figure
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2.13. The coordinate systems used to describe the lamina are

the principal material coordinate system, axes 1 and 2, and

the reference coordinate system, axes x and y. The 1,2

coordinate system is rotated an angle 8 away from the x,y

system. Under plane-stress conditions the stress-strain

relations in the 1,2 coordinate system are given by the

orthotropic form of Hooke's law

°i _ QII QI2 o

°2 = L QI2 Q22 0
r12 0 0 Q66

111s2

YI2

(2.13)

where

Qij = the "reduced stiffness matrix"

E 1 E 2

QII = i - _12 _21 Q22 = i - _12 v21

v12 E2 v21 E1

Q12 = Q21 = 1 - u12_21 1 - u12 v21

Q66 = GI2

In the x,y coordinate system, the stress-strain relations

are given by

III°x QII

Oy = QI2

Txy QI6

QI2 QI6

Q22 626

626 666

EX

ey

Yxy

(2.14)

where
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Qij = the "transformed reduced stiffness matrix"

m4 4QII = QII + 2(Q12 + 2Q66)m2n2+ Q22n

- n4 4Q22 = QII + 2(Q12 + 2Q66)m2n2+ Q22m

QI2 = Q21 = (QII + Q22 - 4Q66)m2n2+ QI2(m4 + n4)

QI6 = Q61 = (QII - QI2 - 2Q66)m3n+ (QI2 - Q22+ 2Q66)mn3

Q26 = Q62 = (Qll - Q12 - 2Q66)mn3+ (QI2 - Q22+ 2Q66)mBn

Q66 = (QII + Q22- 2Q12 - 2Q66)m2n2+ Q66(m4 + n4)

m = cos 8 n = sin 8

A completely equivalent treatment is to consider the strain-

stress relations. In the 1,2 coordinate system, the strain-

stress relations are given by

e1

a2

YI2
i Sll S12 0

= S12 $22 0

0 0 $66
[°l}o 2

_12

(2.15)

where

S.. = the "reduced compliance matrix"
13

i i
SII = _--- $22 = _--

1 2

-v12 -v21

S12 = $21 = --_--- =
1 2

i

$66 = GI 2

In the x,y coordinate system, the strain-stress relations
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are given by

x 1 [ SIIay = I s12
Yxy L s16

S12

22

S26

16

S26

$66
I _x

ay

Txy

(2.16)

where

S.. = the "transformed reduced compliance matrix"
zj

S66)m2n 2 4- = m4 + + + n
Sll SII (2S12 $22

S66)m2n 2 4n4 + + + m
$22 = SII (2S12 $22

S12 = $21 = S12 (m4 + n4) + (SII + $22 - S66)m2n2

3

S16 = $61 = (2SII - 2S12 - S66)m3n - (2S22 - 2S12 - S66)mn

$26 = S62 (2Si I 2S12 S66)mn 3 - n- = - _ - (2S22 2S12 - S66)m 3

$66 = 2(2SII + 2S22 - 4S12 - S66)m2n2 + s66(m4 + n4)

m = cos e n = sin 8

The above relations are derived from the principles of

orthotropic elasticity, subject to the plane-stress

assumption. In practice, SII and $22 are commonly determined

using strain data obtained during uniaxial tensile tests of

O-deg and 90-deg specimens, respectively. Probably the most

common strain-measuring device is an axially mounted

resistance foil strain gage, although other measurement

techniques such as extensometers or moire interferometry

could also be used. Theoretically, S12 can be determined by

mounting a transverse strain gage to either a 0-deg or
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90-deg specimen. However, the value of _21 is normally in a

range of about 0.01 to 0.05, and consequently the strains

measured using a transverse gage mounted to a 90-deg

specimen are very low. This can lead to relatively high

experimental error. In practice, it is preferable to

determine S12 using a transverse gage mounted on a 0-deg

specimen.

A variety of techniques have been proposed to determine

S66, including the rail-shear tests, picture-frame specimen

tests, and off-axis tensile snecimen t_sts. Tn n_tic1_]_

the 10-deg off-axis tensile test has been proposed by Chamis

and Sinclair [47] as a standard test specimen for

intralaminar shear characterization. Several proposed shear

characterization techniques were reviewed by Yeow and

Brinson [48], and it was concluded that of those methods

reviewed the 10-deg off-axis test was best suited for use,

primarily because it is inexpensive and easily performed,

while still providing an accurate measure of the shear

compliance. This technique was used during the present

study. Additional details of the 10-deg off-axis test will

be presented in Chapter VI.

The mechanical response of a composite lamina to in-

plane external loadings can be described as presented above.

The mechanical response of a composite laminate to external

loading can be described through the use of CLT, in
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conjunction with the orthotropic elasticity relations

embodied in eqs. 2.13-16. Some results of CLT pertinent to

the present study will now be presented; readers desiring a

more detailed treatment are referred to the text by Jones

[24].

The resultant forces N. and resultant moments M. acting
1 1

along the edges of a composite laminate can be expressed in

o
terms of the middle surface strains E. and curvatures _.

3 3

as follows

{Ni} Aij1_7=I---_....-I.... (2.17)

where

t/2N. = o. dz

i J-t/2 l

t/2M. = o. z dz

z _-t/2 i

n

Aij = _ (Qij)k (Zk - Zk-l)
k=l

i n 2 2

Bij = _ _ (Qij)k (zk - Zk_ I)
k=l

I n (z 3 3Dij = 3 _ (Qij)k k - z _i )
k=l

o
e. = normal and shear strains induced at laminate middle surface
3

K. = surface curvatures induced at middle surface
J
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The z-direction is defined in a direction normal to the

middle surface. Hence, the quantity (z k - Zk_l) equals the

thickness of the kth ply within the laminate. The resultant

forces Ni are defined as the force per unit length acting

along the edge of the laminate. Similarly, the resultant

moments Mi are defined as the moment per unit length acting

along the edge of the laminate. The strain state of any ply

within the laminate can be expressed in terms of the middle

surface strains o and curvatures _. [24]
] 3

Through inspection of eq. 2.17, it can be seen that a

coupling exists between the in-plane forces N. and the out-
1

of-plane curvatures _j, due to the Bij matrix. Similarly, a

coupling exists between the out-of-plane bending moments M.
1

O

and the in-plane middle surface strains _j, again due to

the Bij matrix. Such coupling is a major difference between

the behaviour of composite materials and more conventional

isotropic materials, since such coupling between in-plane

and out-of-plane forces and deformations does not occur for

isotropic materials. It can be shown that if a composite

laminate is "symmetric", such as the laminate shown in

Figure 2.12, then all elements of the B.. matrix are zero,
13

and no coupling between in-plane and out-of-plane forces and

deformations occurs. During the present study, only

symmetric laminates were considered. In addition, the only
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external loads considered during the present study were in-

. ., = 0 Therefore, eq 2.17 canplane normal loads; i e Mi .

be simplified for the present case to

{Ni} = [Aij ]{E_}3

or

{ o -Ij} = [Aij] {Ni} (2.18)

Since neither out-of-plane bending loads nor coupling

between the in-plane loads and out-of-plane curvatures are

considered in the present case, the middle surface strains
o e

_. are equal to the elastic laminate strains _.
3 ]

{_j}e = {oj}

The elastic laminate strains e. as calculated above are
]

referenced to the x,y coordinate system. These strains can

be transformed to the 1,2 coordinate system of any

individual ply using the standard transformation equation

{liIm222 n2mn22ran2o22!I1xy
Y12/2 -mn mn m -n Yxy/2

where

m = cos 8
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n = sin e

The elastic stresses acting within the kth ply,

referenced to the 1,2 coordinate system, can be calculated

using eq. 2.13

{0i}k ]k e1,2 = [QI2 {_j}1,2

The elastic strains are considered to be the difference

between the total laminate strains ct. and any residual
J

{zj}e = t r1,2 {¢j}1,2 - {cj}1,2

In the present case, the residual strains considered will be

those due to viscoelastic creep. Residual strains can also

be caused by thermal expansion or water absorption

(hygroscopic strains).

Finally, it should be noted that the above relations are

contingent upon the underlying assumptions of CLT, namely

the plane-stress assumption and the Kirchoff hypothesis.

Accordingly, this analysis is not valid for very thick

laminates or for regions near a free-edge. In both of these

latter cases, a three-dimensional stress state is induced,

including interlaminar shear stresses [1-3].



III. THE SCHAPERY NONLINEAR VISCOELASTIC THEORY

One of the objectives of this study was to integrate the

Schapery nonlinear viscoelastic model with the accelerated

characterization scheme previously developed at VPI&SU.

This principally involved the inclusion of the Schapery

equations in an existing computer program called VISLAP,

written by Dillard [21]. The efforts to attain this

objective will be described in this chapter. In the

following section, the Schapery model will be reviewed, and

the methods used to incorporate the appropriate equations

into the present analysis will be described. This

discussion is followed by a section describing the program

VISLAP, as modified for use during the present study.

It should be noted that VISLAP is capable of predicting

both the long-term creep response and creep rupture times of

symmetric composite laminates. In the present study, creep

rupture was not considered, and so in the following

discussion creep rupture will be mentioned only to provide

an overall review of the VISLAP program.

The Schapery Viscoelastic Model

As mentioned in Chapter I, the Schapery nonlinear

viscoelastic theory can be derived from fundamental

principles using the concepts of irreversible thermodynamics

64
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[33,34], and a comprehensive review of the thermodynamic

basis of the Schapery theory has recently been presented by

Hiel et al [22]. The theory has been successfully applied

to a variety of materials, including glass fiber-epoxy

composites [35], T300/934 graphite-epoxy composites [22],

nitrocellulose film, fiber-reinforced phenolic resin, and

polyisobutylene [49], and FM-73 structural adhesives

[37,50,51].

For the case of uniaxial loading at constant

temperature, the Schapery theory reduces to the following

single-integral expression

t dg2o
c(t) = go AoO + gl 0- AA(_-_') _ dT

where

(3.1)

A
o' AA(¢) = initial and transient components of the

linear viscoelastic creep compliance,

respectively

t= ¢(t) = dt

0- ao

T dt= (t) = --
0- ao

go' gl' g2' ao = stress-dependent nonlinearizing

material parameters
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Several points should be noted regarding eq. 3.1.

the initial

compliance, Ao
stress level.

First,

and transient components of the creep

and AA(_), are assumed to be independent of

That is, at a given temperature both A and
O

AA(#) are assumed constant for any stress level, and all

nonlinear behaviour is introduced through the four stress-

dependent nonlinearizing parameters go' gl' g2' and a c-

Secondly, no assumption is implied regarding the form of A
o

and AA(#), and theoretically any form suitable for use with

the material being investigated may be used. It is often

assumed that AA(_) can be approximated by a power law in

time (as will be discussed below), but this is not an

implicit assumption within the Schapery theory. Thirdly, if

the material is linearly viscoelastic, then go = gl = g2 =

a = 1 and eq. 3.1 reduces to the familiar Boltzman
c

Superposition Principle (eq. 2.2). Finally, the effect of

the stress-dependent parameter a c , embedded within the

expressions defining the "reduced time" parameters _ and

_', is to "shift" the viscoelastic time scale, depending

upon stress level. The a parameter can therefore be
O

considered to be a "stress shift factor", analogous to the

familiar "temperature shift factor", a T , used in the TTSP

and discussed in Chapter II. In this light the Schapery

theory can be considered to be an analytical form of a Time-

Stress Superposition Principle (TSSP).



67

If closed-form expressions for go' gl' g2' and ac as

functions of stress are available, and if the form of A and
O

AA(_) are known, then it is theoretically possible to

integrate eq. 3.1 and obtain an expression for the

viscoelastic response _(t) for any uniaxial stress history

c(t). In general such closed-form expressions are not

available however, and subsequently simple stress histories

must be assumed in order to integrate eq. 3.1. However,

during the present study a procedure was developed whereby

the viscoelastic response to a complex uniaxial stress

history can be approximated to any desired degree of

accuracy by using a series of discrete steps in stress.

This approach will be described below and is similar in

concept to the Modified Superposition Principle proposed by

Findley and his colleagues, which was discussed in Chapter

II.

The first step in the application of the Schapery theory

is to establish an analytic form of the transient component

of the creep compliance, AA(_), which is suitable for use

with the material being investigated. In previous

applications of the Schapery theory, AA(_) has been modeled

using a power law approximation of the form

AA(_) = C_ n (3.2)

This form was also used in the present study. In eq. 3.2
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both C and n are assumed to be material constants at any

stress level, for a constant temperature. Substituting eq.

3.2 into eq. 3.1 results in

t )n dg2 os(t) = go A a + gl C (_-_' -- dT
o 0- dY

(3.3)

Now consider the stress history applied during a creep/creep

recovery test cycle, as previously illustrated in Figure

2.1. This stress history can be expressed mathematically as

o(t) = Oo[H(_) - H(_ - tl)]

and therefore

dg 2 o

dT = g2 °0 [6(_) - _(r - tl)]

For times 0 < t < t I,

therefore

the stress is a constant, c = c o , and

dg 2 c

dT = g2 °0 6(_)

t dt _ t@ = - a a
0 o o

=0_' = d-it= 0

0- ao

Substituting these relations into eq. 3.3 results in
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Ig glg 2 C tn]
ec (t) = 0A + n a0

o a

(3

Equation 3.4 is the Schapery equation for creep, and is

applicable for times 0 < t < tI. The values of go' gl' g2'

and a are dependent upon the applied creep load go" The

instantaneous response at time t = 0 will be of interest in

_^ fol I...._ di " _ _ _ A +_ _=_ _ _im_

t = O iS calcu±atea as

A¢(0) = g0AoC0

Now consider the recovery strains during times t > t I.

The current applied stress is now _ = 0, and hence go = gl =

I, and eq. 3.3 becomes

t dg2aer(t) = C (___,)n __ aT (3 5)
0- dT

Since the stress history _(t) is discontinuous, eq. 3.5 must

be broken into two parts

- dg2____a° I t )n dg2°er(t) = C tl (___,)n dr + C (_-_' dr

0- dT tl

dT (3.6)
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for I tl :
0- dg2o

d---_= g2oO_(_)

- ItitdtI td +__= a
O- ao o t I

_' = I_=0 dta
0 o

-0

dt tl
---+t- t I

i a

tfor

tI
____.__..-.---------

dg2° 6(__tl )
d--?-= - g2°O

t dt tl
-_+t- tI@ = a

O- ao o

I_=tl dt tl
_'= %--= a-_

:0- o

Substituting the above relations into eq. 3.6 results in

gr (t) = g2 C a 0 _ tI j

(3.7)

The following quantities are next defined

t I

O

t - t I

tI

II

4g I = glg 2 C _i °o
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and equation 3.7 is rewritten in a simpler form as

A_I

r gl
[(i + aoX)n - (aox)n] (3.8)

In the

equation in the form of eq. 3.8.

An interesting consequence of

involves the instantaneous change

literature, Schapery has presented the recovery

the

in

Schapery theory

strain following

If the recoveryremoval of the creep load at time t I.

strain predicted immediately after t I (calculated using eq.

3.8) is subtracted from the creep strain predicted

immediately before t I (calculated using eq. 3._), the

following expression is obtained

n

C t1

Ae(tl) = g0Ao°0 + (gl - l)g2 n °0
a
O

The instantaneous response to the creep load has already

been shown to be

AE(O) = goAoOo

Thus, the instantaneous change in strain following removal

of the creep load at time t I equals the instantaneous
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response at time t = 0 only if the material is linear, i.e.,

if gl = 1.0. If gl > 1.0, then AE(tl) > _(0), and the

resulting nonlinear recovery curve is "flatter" than the

corresponding linear recovery curve. If gl < 1.0, then

A_(tl) < At(O) and the nonlinear recovery curve is "steeper"

than the linear recovery response.

The viscoelastic response to the two-step loading

illustrated in Figure 3.1 can be derived using similar

mathematical procedures [49]. For example, for times t >

t I, the viscoelastic response is given by

2 2 [glol_n + (g2202_gl(_l)[_ _ _] n]e(t) = g0Ao°2 + gl C 2 (3.9)

where

tI t - t1

=-Y+ 2
a a
0 o

In eq. 3.9, the superscripts associated with each of the

nonlinearizing parameters denote the stress level at which

these parameters are to be evaluated. For example, g_

indicates that g2 is to be evaluated at stress 02 .

During the present study, the Schapery theory was to be

used to predict the viscoelastic response of individual

plies within a composite laminate. In previous efforts, the
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stress applied to a given ply over time had been

approximated in discrete steps in stress, as illustrated in

Figure 3.2. Therefore, an expression for the viscoelastic

response after an arbitrary number of steps in stress was

required for the present effort. To the author's knowledge,

such an expression has not been published in the literature.

Expressions for three-step and four-step loadings were

derived, using the same mathematical procedures as described

above, and a predictable pattern began to emerge. By

inspection, the following recursive relation was obtained

for the viscoelastic response at time tj, following j steps

in stress

where

e.= gAo +g C
j oj

i [_]n + (g_o2 g2ol ) -g2°l

(aoJ J

+

l

J-loj_ I) [_ - _l]n I+ (gJoj - g2
J

_i =

i tk- tk_ I
k

k=l a

J tk - tk_ I

I k
k--1 a

(J

(3.10)
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As before, the superscripts associated with the

nonlinearizing parameters go' gl' g2' and aa indicate the

stress level at which these quantities are to be evaluated.

In the preceding discussion a uniaxial normal stress, c,

has been used to illustrate the Schapery theory. An

equivalent treatment can be presented for a constant applied

shear stress , _, and any of the above expressions can be

converted to the corresponding relationship for shear by

simply replacing o with _ and _ with _/2. For example, the

recursive relationship given as eq. 3.10 becomes for the

case of shear

{• " i [_]n + (g_ _ g2_l) _
1 _ + gl C g2rl 2 [a_J]

Yj = ggAo i

_ It2a _ t--_]]n

3 2 - tl

+ (g2_3 - g2_2 ) - +

o aojj

+

• j-I }+ (g_Tj - g2 Tj-I)[* - _l]n (3.11)

where

J tk - tk_ I

_= _ k
k=l a

O
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_i =
j-I tk - tk_ I

k
k--i a

Experimental Measurement of the Schapery Parameters

The above presentation has indicated that to

characterize the behaviour of a viscoelastic material using

the Schaoerv theory, s_v_ m_t_i_] m_=m=9_ :_: _:_4_:_

TL_: _: Lh= :i::Li_ _umpiiance nerm ao, _ne power law

parameter C, the power law exponent n, and the four

nonlinearizing functions of stress, go(O), gl(o), g2(o), and

ao(o). These parameters are customarily determined through

a series of creep/creep recovery tests at sequentially

higher creep stress levels. At relatively low stress

levels, linear viscoelastic behaviour is usually observed,

= 1 Therefore at low stressand hence go = gl = g2 = ao "

levels the Schapery single-integral (eq. 3.1) reduces to the

Boltzman Superposition Principle (eq. 2.2), and the Schapery

equation for creep (eq. 3.4) is equivalent to the Findley

power law equation (eq. 2.7). The results of the low stress

level creep tests can therefore be used to determine Ao, C,

and n.

Nonlinear viscoelastic behaviour is often initiated at

relatively high stress levels, and in general go # gl _ g2 _
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a _ I. These four parameters are determined using the
a

results of high stress level creep tests, where it is

assumed that A o, C, and n have been previously determined.

Lou and Schapery [35] have presented a technique whereby

these seven material parameters are determined graphically.

Since graphical techniques are inherently time-consuming and

subject to graphical error, computer-based routines have

been developed which determine these parameters by

performing a least-error-squared fit between the

experimental data and the appropriate analytic expression.

Two such numerical schemes where used in the present study.

The first of these was written by Bertolloti et al [52], and

is called the SCHAPERY program, since it is based upon the

Schapery nonlinear equations. The second was written by Yen

[46], and is called the FINDLEY program, since it is based

upon the Findley power law equation. As discussed above,

under conditions of linear viscoelastic behaviour the

Schapery creep equation and the linear Findley power law

equation are equivalent. FINDLEY was used in the present

study only for linear viscoelastic stress levels.

Both the SCHAPERY and FINDLEY programs utilize a

commercially available least-error-squared fitting routine

called ZXSSQ, which is an ISML library routine available on

the VPI&SU computer system. This routine is capable of

fitting a user-supplied analytic expression involving N
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unknowns to a set of M experimental measurements. The

details of the ZXSSQ routine are proprietary to ISML, and in

any case are irrelevent to the present discussion since

routines which can provide the same function are available

on most computer systems.

Some details regarding the SCHAPERYand FINDLEY programs

are described below.

Program SCHAPERY

The computer program SCHAPERY is used to perform two

distinct analyses, the linear viscoelastic analysis and the

nonlinear viscoelastic analysis. For the linear case three

unknowns are required; namely Ao, C, and n. For the

nonlinear case it is assumed that Ao, C, and n are known,

and the four remaining unknowns go' gl" g2' and a are

required. It is easiest to discuss the program by first

considering a linear analysis and then considering a

nonlinear analysis.

Linear Analysis. For the linear case the Schapery equations

for creep and recovery are reduced to:

_c (t) = Ao_ + Cot n (3.12)

and

_r(t ) = AEI[(I + x)n _ _n] (3.13)
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where

&Zl = C°tl

t - t1
-

t

The three unknowns in these equations are the instantaneous

compliance A o, and the power law parameters C and n.

The SCHAPERY program uses linear creep and recovery data

to determine these parameters as shown in the flow chart

given in Figure 3.3. First information defining the data

set is input. This includes the number of recovery points,

NREC, the number of creep points, NCR, the creep unloading

time, t I, the creep stress level, o, and initial estimates

for the transient creep strain, A_ I, and power law parameter

n. Note that in the linear case the transient creep strain

is directly proportional to the power law parameter C

As 1
C = --

n

°0 tI

(3.1_)

Therefore, the initial estimate for Ag I is an initial

estimate for C as well.

Next the recovery data pairs are input, consisting of the

recovery time, TREC(M), and the measured recovery strain,

REC(M). The linear recovery curve, eq. 3.13, is then fit to

the data using ZXSSQ, and estimates for the two unknowns Ag I
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Input
No. Recovery Data Pts., NREC

No. Creep Data Pts., NCR

Unloading Time, TCRIT = tl
Creep Stress, SIGMA

Initial Estimates for

_I , n

I
Input Recovery Data Pairs

Call Subroutine 7x_Kn

........ Eq

er(t ) : _l[(l + X) n _ Xn]

Return:

AmI : Cat_ , n

I Input Creep Data Pairs

Call Subroutine ZXSSq

Fit Linear Creep Equation:

_c(t) = _o + Cqtn

Return:

¢0 = Aoa

Figure 3.3: Flow Chart for Program SCHAPERY - Linear Analysis
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and n are obtained. C is then calculated using eq. 3.14.

The creep data pairs are then input, TCR(M) and CR(M).

Since C and n have been determined using the recovery data,

the only unknown which remains is the instantaneous

compliance A o. The value of A ° is calculated by fitting the

creep data to the linear equation for creep, eq. 3.12, again

using the library routine ZXSSQ.

Nonlinear Analysis. In the nonlinear case, the Schapery

equations for creep and recovery are

glg2
(t) = +- C tna

c g0Ao°0 n o
a
a

(3.15)

and

[(i + aol) n - (a k) n] (3.16)

where, for the nonlinear case,

glg2 n

Ae I = -- C an tl
a
a

Since it is assumed that a linear analysis has been

performed to determine Ao, C, and n, there are only four

unknowns remaining in eqs. 3.15 and 3.16. These are go' gl'

g2' and aa. Program SCHAPERY uses nonlinear creep and creep

recovery data to determine these parameters as shown in the

flow chart given in Figure 3.4. First, information defining

the data set is input, which includes the number of recovery
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No. Recovery Data Pts., NREC
No. Creep Data Pts., NCR

Unloading Time, TCRIT = t 1
Creep Stress, SIGMA
Initial Estimates for

(A_i/g I ) a' 0

I

Input Recovery Data Pairs

I

Call Subroutine ZXSSQ

Fit Nonlinear Recovery Equation:

_r(t) - AcI [(I + a X) n - (aaX) n]
gl a

Return:

(A_i/g I ) , aa

I
Input Creep Data Pairs

I

Call Subroutine ZXSSQ

Fit Nonlinear Creep Equation:

glg2
c(t) : goAoao + _ ctnao_ n

a
ci

Return:

(goAoao) , (glg2Cao)/(a n)

Figure 3.4: Flow Chart for Program SCHAPERY - Nonlinear Analysis
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points, NREC, the number of creep points, NCR, the creep

stress unloading time, t I, and initial estimates for the

transient recovery strain, (AEI/gl), and the parameter a •

The recovery data pairs are then input, which consists of

the recovery time, TREC(M), and the measured recovery strain

at that time, REC(M). The nonlinear recovery curve, eq.

3.16, is then fit to the data using ZXSSQ and estimates for

the two curve-fitting parameters, (AZl/g I) and a , are

obtained.

Next, the creep data pairs are input, TCR(M) and CR(M).

The nonlinear creep curve, eq. 3.15, is then fit to the

creep data using ZXSSQ. Estimates for the quantities

n

(g0Ao_) and (glg2C_/a_) are obtained. This completes the

analysis, since all of the Schapery parameters may now be

calculated as follows:

AE
1

gl = _(Ael/gl)

g2 = gl C a
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Program FINDLEY

Since the program FINDLEY is used only for the case of

linear viscoelastic behaviour, there are only three

unknowns, Ao, C, and n. These parameters are determined

using creep data only. The creep data is fit to the Findley

power law equation

where

0
+ mt n

c = A c
O O

(3.17)

m = Cc

A flow chart for the FINDLEY program is given in Figure 3.5.

Information defining the data set is input first, including

the number of creep data points, initial estimates for ¢
O'

m, and n, and the time and creep data sets. The Findley

power law is then fit to the data, and best-fit estimates

for ¢o' m, and n are returned. A ° and C are then calculated

using eqs. 3.17.

Average Matrix Octahedral Shear Stress

A final consideration is the effect of stress
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No. Creep Data Pts., NCR
Initial Estimates for

_o ' m , and n

Input Creep Data Pairs

i
Call Subroutine ZXSSQ

Fit Linear Creep Equation:

_c (t) : _o + mtn

Return:

_o , m , and n

Figure 3.5: Flow Chart for Program FINDLEY
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interaction in the case of multiaxial stress states. During

experimental characterization of a viscoelastic material the

various parameters are often determined under conditions of

a uniaxial normal stress. In the present case the S22(t,c )

compliance term was determined based on a uniaxial stress

_2' for example. However, an individual ply within a

composite laminate is in general subjected to a plane-stress

state consisting of the three stress components 01 , c2, and

_12" The effects of stresses °! and _!2 on viscoelastic

..... _= u,_ _ _ _t_mi_ed under uniaxial stress

a2 only must therefore be considered. Lou and Schapery [35]

and Dillard, Morris, and Brinson [21] have accounted for

such interaction through the use of the "average matrix

octahedral shear stress", _oct" This approach uses a simple

rule of mixtures approximation to calculate _oct" The

resulting expression for _oct is [21]

1

l m2 m 22Toc t : -_ [(o I - o 2) + + + 6(T12) ] (3.17)

m
where the matrix stresses o_, 02' and _12 are given in

terms of the applied ply stresses 01 , 02, and r12 by

Imlnl
o 2 =

m
r12

Um- E-_I _J12

0 1

0 0

0

1

o2

r12

(3.18)
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and

Ell = Efvf + Em(l - vf)

v12 = vfvf + _m(l - vf)

v = matrix Poisson's ratio
m

Ef = fiber modulus

E = matrix modulus
m

vf = fiber volume fraction

Note that it is assumed that both the ply normal stresses

perpendicular to the fibers and the ply shear stresses are

m
supported entirely by the matrix, i.e., c_ = c 2 and _12

= _12"

Some of the above properties were not available for the

graphite-epoxy used in this study, as the manufacturer had

only supplied the volume fraction. The properties required

were obtained by measuring Eli, E22, and _12' and assumimg a

value for
m

With the additional rule of mixtures relation

E22 =

Ef Em

(i - vf) Ef + vf Em

it was possible to calculate an appropriate value for each

of the required material properties. The values obtained

and used in the analysis were
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Eli = 132.2 GPa (19.16 X 106 psi)

v12 = 0. 273

v = 0.35
m

Ef = 201.3 GPa (29.2 X 106 psi)

E m = 3.42 GPa (0.497 X 106 psi)

vf = 0.65

The ply strain-stress relationships as used in the

I _i(t) }
e2(t) =

L YI2 (t)

Sll S12 0

S12 S22(t,Toc t) 0

0 0 S66(t,TOC t

Ol(t)

O2(t)

) LZl2 (t)

(3.19)

Lamination Program VISLAP

The computer program VISLAP provides long-term

predictions of both the creep compliance and the creep

rupture times of composite laminates of symmetric layup.

This program was modified during the present study by

inserting the Schapery viscoelastic model into the program

as described above. The program will be briefly described
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in this paragraph. The reader is referred to Reference 21

if additional details regarding program structure are

desired.

The analysis performed by VISLAP is based upon classical

lamination theory, either the Findley MSP or the Schapery

viscoelastic model, and the Tsai-Hill failure criterion

[24]. The Tsai-Hill failure criterion is normally applied

to elastic materials, but has been modified for use with

viscoelastic materials during previous research efforts

[21]. A linear cumulative damage law is used to account for

time-varying ply stresses.

A flow diagram of VISLAP is given in Figure 3.6. The

program proceeds as follows: The laminate layup and initial

lamina properties are input, (A). The current elastic

laminate strain is determined using CLT, (B) through (G).

The total laminate strain is then calculated as the sum of

the current elastic laminate strain plus the current

equivalent laminate creep strain, (H). The individual ply

stresses are next calculated, based upon the total laminate

strain minus the individual ply creep strain, (I). If the

ply stresses have changed significantly since the previous

time step, a nonlinear iteration procedure cycles through

steps (B) through (I) to assure that the ply stresses have

converged to the actual current stress state, (J). This

stress state is then stored in a stress history array and
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time is incremented, (K). The current ply creep strains

which would be produced by the stresses stored in the stress

history array are then calculated, (L). The modified

version of VISLAP allows the user to select either the

Findley MSP viscoelastic model or the Schapery viscoelastic

model to calculate these ply creep strains. An "equivalent

mechanical load" which equals the summation of the loads

required to produce ply elastic strains of the same

magnitude as the current ply creep strains is next

calculated (M). This equivalent load is then used to

calculate the equivalent laminate creep strain (N). The

modified Tsai-Hill failure criterion is used to predict any

lamina failures, together with the cumulative damage law and

the stress history array. Should a ply fail, the ply

properties are modified to account for the type of ply

failure (i.e., either a fiber or a matrix failure), (O) and

(P). The entire procedure is repeated until either all

plies have failed or the user-specified maximum time is

reached.

A subtle point in the analysis which should be noted is

that the equivalent laminate creep strains calculated in

step (N) do not in general equal the individual ply creep

strains calculated in step (L). The differences between the

equivalent laminate creep strains and the individual ply

creep strains are added to the original elastic ply strains,
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resulting in ply stresses which vary with time. As

viscoelastic deformations occur, a greater percentage of the

externally applied loading is supported by the fibers,

whereas the matrix load is decreased. Thus, the ply

stresses change with time even though the externally applied

creep load is constant.



IV. SENSITIVITY ANALYSIS

Early in the experimental portion of this study, it

became apparent that the linear viscoelastic parameters A o,

C and n were very sensitive to small errors in measured

strain data. High sensitivity to measurement errors have

also been reported by Dillard [21], Hiel [22], Rochefort

[37], and Yen [46]. Both Dillard and Yen concluded that a

stable value for the power law exponent n could not be

obtained through short-term creep tests; long-term tests of

a duration of 104 minutes (6.9 days) or greater were

required. The major difficulty encountered by Hiel during

his application of the Schapery theory was that "damage"

accumulated within the test specimen during the creep

portion of the creep/creep recovery testing cycle. This

resulted in a permanent strain reading after the recovery

period, i.e., the recovery strains did not return to zero

but rather approached some permanent strain level in an

asymptotic manner. Similar difficulties have been discussed

by others, including Lou and Schapery [35], Caplan and

Brinson [36], and Peretz and Weitzman [50]. From these

efforts, it appears that damage accumulated during the creep

portion of the testing cycle is the major potential source

of error in application of the Schapery theory. Hiel used

his recovery data to calculate various viscoelastic

94
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parameters, but could obtain stable values only by first

subtracting the permanent strain from the recovery data

recorded at each point in time. This procedure effectively

translates the entire recovery curve down towards zero

strain.

It should be noted that many researchers subject

viscoelastic specimens to a "mechanical conditioning cycle"

prior to the creep/creep recovery test [35,37,46]. The

assumption is that such a conditioning cycle produces a

stable damage state within the specimen, and no further

damage is accumulated during the creep/creep recovery test.

Apparently this approach avoids the difficulties associated

with permanent recovery strains encountered by Hiel.

However, Hiel argues [22] that mechanical conditioning

results in a fundamental change in the material being

investigated, and therefore results obtained from

mechanically conditioned specimens do not reflect the

behaviour of the material which would occur in a practical

situation. Specifically, it was felt that mechanical

conditioning results in plastic deformation of the matrix

material which alters the initial stress-strain constitutive

relationship of the virgin matrix material. A further

complication arises in the present case, since results

obtained using unidirectional specimens were to be used to

predict the response of laminates with arbitrary layup.
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Since ply stress states vary with layup, the appropriate

mechanical conditioning cycle would depend upon the specific

laminate being studied. Due to the above considerations, no

mechanical conditioning was performed in the present study.

Two areas of concern arose during the present efforts

due to the above observations. First, the level of accuracy

required when determining the values of the seven Schapery

viscoelastic parameters was not clear. Since these

parameters were to be used to predict long-term viscoelastic

behaviour, such errors could obviously impact the predicted

response. Therefore, until the impact of these errors on

predicted response was evaluated, the severity of such

errors could not be properly appreciated. Secondly, it

appeared that some viscoelastic parameters were more

sensitive to experimental error than others. For example,

the values obtained for the power law exponent n by Dillard

[21] at various stress levels exhibited a significant

scatter, whereas the values for the power law parameter m

(where in the linear case m = Ca) were relatively smooth and

uniform with stress (see Figure 1.3). An attempt was made

to determine the origin of this sensitivity. It was felt

that such information would indicate the level of stability

which could be expected for each parameter during reduction

of actual experimental data, and might also be useful in

selecting appropriate testing cycles and data reduction
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techniques.

Impact on Lonq-Term Predictions

One of the major objectives of this study was to predict

the long-term behaviour of a composite laminate based solely

upon the results of short-term tests of unidirectional

composite specimens. Specifically, the creep compliance of

a composite laminate was monitored for a period of 105

minutes (69.6 days). Therefore, the impact of error over a

105 minute period was considered.

Consider a nonlinear viscoelastic material subjected to

a uniaxial creep load, and assume that the material follows

the Schapery theory exactly. Thus, the viscoelastic

response is given by eq. 3.4, restated here for convenience

lg glg 2 C t
ec(t ) = 0A ° + _ o0 (3.4)

a n

Further suppose that the exact values for each of the seven

viscoelastic parameters involved in eq. 3.4 are as follows

A ° = O.0978/GPa (0.674 X lO-6/psi)

C = O.O0210/GPa-min n (0.0145 X lO-6/psi-min n)

n = 0.33

go = I.i0

gl = I. I0

g2 = 0.90

a = 0.90
O
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The values for the nonlinearizing parameters correspond to

values expected for a slightly nonlinear viscoelastic

material. They were selected because previous results

indicated that the 90-deg unidirectional T300/5208 graphite-

epoxy specimens used in this study were either linearly

viscoelastic or only slightly nonlinearly viscoelastic at a

temperature of 300F. The values for Ao, C, and n were

estimated using the results of a few initial tests at low

stress levels.

Now suppose that an experimental program has been

conducted, and all viscoelastic parameters have been

calculated exactly except for one, say g_. The superscript

"e" denotes that the experimental g2 value is in error. The

creep strain which would be expected based upon these

experimental results is given by

eglg 2 C t
_-(t) = +

O 0c- - n

a o

The error in predicted strain at any time t can now be

expressed as

ee(t) - e (t)

error(t) c c= x 100%
(t)

C

The impact on predicted strain levels at any time t due to
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an error in one of the viscoelastic parameters can be

isolated using this approach. Based upon previous results,

a deviation of _I0_ from the average measured value of the

linear viscoelastic parameters is not uncommon, so this

level of error was used in the analysis. A creep stress

level of 13.8 MPA (2000 psi) was assumed.

Note from eq. 3.4 that go and A° are both linearly

related to the creep strain _c(t), and therefore a !I0_

error in either go or A ° has the same affect on _c(t).

Similarly, _I0_ errors in g1' g_' or C affect the predicted

creep strains in identical fashion. Therefore, only four

analyses were required: the first to account for errors in

go or A o, the second to account for errors in gl" g2' or C,

the third to account for errors in n, and the fourth to

account for errors in a

Results are summarized in Figures 4.1-4.4. Figure 4.1

illustrates the error in predicted creep strains due to a

_i0_ error in either go or A o. An error of this type is

confined entirely to the instantaneous creep strain, i.e.,

the transient creep strains are not affected by an error in

either go or A o. Therefore, the percentage error is equal

to !10% at time t = O, and slowly decreases with time as

transient strains develop. After 105 minutes, the error has

been reduced to about _7_.

The effects of a _I0_ error in gl' g2' or C are
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illustrated in Figure 4.2. Since an error of this type

impacts only the transient component of the total creep

response, the percentage error is very low at short times,

and in fact is zero at time t = 0. As indicated, the

percentage error reaches !3% after 10 5 minutes.

Figure 4.3 illustrates percentage error due to a _I0_

error in n. This error again impacts only the transient

strain response, and hence the error is very low at short

times. At long times however, the error becomes appreciable

and obviously increases dramatically for times greater than

10 5 minutes. A I0% error in n results in a 12% error in

(t) after 10 5 minutes, while a -I0% error in n results in
c

a -9% error in _ (t) after 10 5 minutes.
c

A _I0% error in a ° is illustrated in Figure 4.4. The

error curve for a is very similar to that for error in n,
o

but as indicated the predicted values for _c(t) are much

less sensitive to error in a than to error in n. The error
o

in Ec(t ) due to a +10% error in a° is less than $1% after

10 5 minutes.

It should be noted that Figures 4.1-4.4 are based upon

the specific values selected for A o, C, n, go' gl" g2' and

ao. Different results would obviously be obtained if the

material properties were different, and the results reported

here should not be considered to be representative of the

response of all viscoelastic materials. It is considered
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that the results presented are reasonably accurate for a

90-deg unidirectional specimen of T300/5208 graphite-epoxy,

however.

Sensitivity to Experimental Error

In this paragraph, efforts to determine which of the

viscoelastic parameters are most sensitive to experimental

error will be described. As presented in Chapter III, these

seven parameters are determined using a two-step process.

First Ao, C, and n are calculated using creep and recovery

data obtained at relatively low stress levels such that

linear viscoelastic behaviour is observed. Once estimates

for Ao, C, and n are obtained the remaining four parameters

go' gl' g2' and a ° are determined using nonlinear data

recorded at higher stress levels. The sensitivity analysis

followed this same format. An analysis was first performed

which considered the sensitivity of Ao, C, and n to errors

in linear viscoelastic data. A second analysis then

considered the sensitivity of gO' gl' g2' and a° to errors

in nonlinear viscoelastic data.

The first step in both analyses was to generate an

"exact" creep and creep recovery data set. This data set

was generated analytically using the Schapery equations.

That is, strain data were calculated at specified times

using eqs. 3.4 and 3.8 and subsequently used as the exact
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data Set. Values assumed for the various viscoelastic

parameters were the same as those listed in the preceding

paragraph, and as noted are appropriate for a slightly

nonlinear viscoelastic material. A 30 minute/60 minute

creep/creep recovery testing cycle was assumed. A testing

cycle of this duration is typical of those used in previous

studies [18-22,35-37,46,50,51]. During the present study, a

480 minute/120 minute creep/creep recovery test cycle was

used, partially due to the results of the present

sensitivity analysis. Selection of the testing cycle

employed in this study will be further discussed in Chapter

V.

Once the exact data was obtained as described above, it

was neccessary to define the errors within the data set.

Two types of error were considered, a "percentage error" and

an "offset error". For the percentage error case, the

strain data used in the analysis was in error by some

constant percentage of the exact strain value at each point

in time. The +I0% error case for creep recovery is shown in

Figure 4.5. Note that a percentage error causes a change in

shape of the strain history curve, since the numerical value

of the error changes as the value of the exact strain data

changes.

For the case of an offset error, the strain data used in

the analysis was in error by some constant amount at any
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time. That is, some constant strain value was added to or

subtracted from the exact data set at all times. The +5

_in/in offset error case is shown for creep recovery in

Figure 4.6. An offset error does not change the shape of

the strain history curve, but rather rigidly translates the

entire curve up or down the vertical axis. Note that Hiel

[22] reduced his recovery data as if an offset error had

occurred. That is, the permanent strain reading recorded

after recovery was subtracted from the recovery strain data

at each point in time, translating the entire curve down the

strain axis.

Both the percentage and offset error types have been

defined as an artificially smooth deviation from exact

behaviour. Simple random error probably occurs most

frequently in practice, where "random error" refers to small

errors in strain measurement which occur in no discernible

pattern and at intermittent times throughout the test

period. Due to their very nature, random errors are

difficult to model. The effects of random error are most

often accounted for through the use of some least-error-

squared smoothing technique. Such techniques were used

during the present study as described in Chapter III, to

minimize the effects of any random experimental error.
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Linear Viscoelastic Analysis

As discussed in Chapter III, two computer-based fitting

routines were available to obtain the linear viscoelastic

parameters Ao, C, and n. The SCHAPERY program utilizes

linear creep recovery data to calculate C and n, and linear

creep data to calculate A o. The FINDLEY program uses only

linear creep data to calculate A o, C and n. These programs

were used to generate the results presented below.

Calculations Using Creep Data. A o, C, and n were calculated

using creep data which contained percentage errors ranging

from -I0_ to +I0_. The results of these calculations are

summarized in Figure 4.7. It was found that n is completely

independent of percentage errors, as n was calculated

correctly as 0.33 in all cases. A 0 and C were influenced

dramatically by percentage errors, however. Furthermore, it

was found that a percentage error in strain data causes the

same percentage error in A and C. For example, a +i0_
o

error in strain measurement causes the same +I0_ error in

both A and C.
o

A o, C, and n were next calculated using creep data which

contained offset errors ranging from -I00 _in/in to +I00

_in/in. These results are summarized in Figure 4.8. It was

found that both C and n are independent of offset errors in

creep data, and all error is confined to the estimate for

A o. This is as would be expected, since as previously noted
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an offset error does not change the shape of the creep curve

but merely shifts the entire curve up or down the vertical

axis. Hence, only the estimate for the initial compliance

A is affected. These results imply that even in the case
o

of very high offset error accurate measurement of C and n is

possible using creep data.

Calculations Using Recovery Data. The parameters C and n

were calculated using recovery data which contained

percentage errors ranging from -I0_ to +I0_. The results

are summarized in Figure 4.9. As before, it was found that

n is completely independent of percentage errors, while C is

linearly dependent on percentage errors; a +I0_ error in

strain measurement causes a +I0_ error in the calculated

value for C.

In Figure 4.10 the estimates for C and n calculated using

recovery data which contained offset errors ranging from -5

kin/in to +5 _in/in are shown. It is seen that both C and n

are highly sensitive to offset errors in recovery strain

data. This is in direct contrast with the results presented

in Figure 4.8, where it was shown that offset errors

imbedded within linear creep strain data had no effect on

the estimates for C and n, but only on the estimate for A o"

These results indicate that estimates for C and n may be

more stable if obtained by using creep data rather than

recovery data, especially under conditions in which offset
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errors may be prevalent.

Nonlinear Viscoelastic Analysis

During the nonlinear viscoelastic analysis, the impact

of measurement error on the four nonlinearizing parameters

go' gl' g2' and a° were investigated. It was assumed that

the exact values for A o, C, and n were known, and the

program SCHAPERY was used to calculate the effects of the

two types of error considered.

Effects of Percentage Errors. The effects of percentage

errors ranging from -I0_ to +I0% are summarized in Figures

4.11-4.14. As indicated, the parameters go and g2 are most

sensitive to percentage errors. The variance of go with

percent error was found to be linear, and is very similar to

the effects on A in the linear case (see Figure 4.7). This
o

simply reflects that error in the initial response is

embedded entirely within the go parameter. Errors in the

transient response are divided among the gl' g2' and a °

parameters in a manner dictated by the least-squared-error

convergence criteria within the program SCHAPERY. This

accounts for the rather irregular dependence on percent

error exhibited by these three parameters.

Effects of Offset Error. Offset errors were expected to

arise mainly due to accumulated damage within the matrix

material. Such damage becomes apparent during the recovery
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portion of the creep/creep recovery testing cycle in the

form of a permanent strain reading. If this permanent

strain is subsequently removed from the recovery data, the

offset error within the recovery data is presumably

decreased to a relatively low level. However, since the

mechanism by which damage is accumulated during creep is not

apparent, no correction of the creep data has been performed

during previous efforts. The offset error within the creep

data therefore remains relatively high.

These considerations were taken into account by

specifying different levels of offset error in the creep and

creep recovery data. Offset errors ranging from -i00 _in/in

to +I00 bin/in were assumed to exist within the creep data,

while offset errors ranging from -5 _in/in to +5 _in/in were

assumed to exist within the recovery data. While specifying

offset error in this manner is admittedly arbitrary, it is

believed to reflect the qualitative nature of offset errors

which would exist in an experimentally obtained data set.

The results of this analysis are presented in Figures

4.15-4.18. The major impact of the offset errors considered

is embedded within the parameters go and a , although all

four parameters are affected to a greater extent by offset

errors than by percent errors.
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Summary of the Sensitivity Analysis

The results of the sensitivity analysis just described

were used to guide the selection of the creep/creep recovery

testing cycle used in the present program, which will be

discussed in Chapter V. Therefore, it is appropriate to

summarize the major results of this analysis at this point.

It is concluded that an accurate measure of n is crucial

for reasonable long-term predictions of viscoelastic creep

response. Errors in gl' g2' C, or a ° can also be important

at very long times, but for the particular time frame used

in the present study these are less important than errors in

n. It is considered from a practical standpoint that errors

in A ° or go are relatively unimportant, first because such

errors are apparent immediately and second because the

impact of such errors decreases with time.

It is further concluded that the power law exponent n

should be calculated using creep data rather than recovery

data. As demonstrated, n is insensitive to percentage

errors within either creep or creep recovery data, and is

also insensitive to offset errors within creep data. This

parameter is very sensitive to offset errors within recovery

data, however, and it is likely that offset errors will

occur due to the accumulation of damage during the creep

cycle.

While the sensitivity analysis presented in this chapter
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is believed to represent a reasonable approach, it must be

admitted that rather arbitrary and subjective assumptions

have been made. These are necessitated for the most part by

the unknown nature of the damage mechanism believed to be

primarily responsible for experimental error. Until further

information regarding such damage is available, a more

rigorous sensitivity analysis cannot be performed.



V. SELECTION OF THE TESTING SCHEDULE

Preliminary Considerations

The

Schapery

determined

seven viscoelastic parameters involved in the

nonlinear viscoelastic theory are typically

using data obtained during a series of

creep/creep recovery tests. The testing schedule used to

determine these parameters must be selected so as to insure

that the viscoelastic response predicted at long times is

reasonably accurate. This is especially significant in

light of the analysis presented in Chapter IV, where it was

demonstrated that an error in any of the parameters

associated with the transient response (gl' g2' ao" C, or n)

is not apparent at short times but may result in gross error

at long times. This implies that prior to selection of the

creep/creep recovery testing cycle a conscious decision must

be made regarding both the desired length of prediction and

desired accuracy of prediction. A testing cycle which

results in an acceptable prediction at 10 5 minutes may not

result in an acceptable prediction at 10 6 minutes, for

example.

A review of the literature indicates that in general the

creep/creep recovery testing schedules used during previous

applications of the Schapery theory have been of relatively

124
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short duration. For example, some reported creep/creep

recovery time schedules are 60 minutes/600 minutes [22], 60

min/120 min [35], 30 min/30 min [36], 30 min/60 min [37], 15

min/5 min [50,51], and 25 min/25 min [53]. In all studies

the viscoelastic response was compared to actual

measurements and judged to be an accurate prediction.

However, in all cases the predicted response was compared

over a time span either equal to or only slightly greater

than the original creep time. Thus, it is not clear whether

testing schedules listed are accurate enough to provide

viscoelastic predictions at much longer times, say at times

greater than 104 minutes.

Another consideration is the method of strain

measurement used. In this study (and in most previous

studies) resistance foil strain gages were used to measure

strain. In modern strain gage applications, the strain gage

system (including strain gage, amplifier, and readout

device) will commonly provide a sensitivity of 1 _in/in.

However, there are many inevitable experimental difficulties

involved, including amplifier nonlinearities, instabilities,

and noise; strain gage thermal compensation; strain gage

stability and drift; and tolerances in gage factor and

resistance. When these factors are taken into account,

measurement accuracy under the best of conditions is
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probably no better than about _5 _in/in. This potential

level of error must also be considered during selection of

the test cycle.

The amount of viscoelastic response expected at the

temperature and stress levels of interest is also of

importance. In general, long-term predictions for highly

viscoelastic materials require a very accurate measure of

the viscoelastic parameters, whereas predictions for mildly

viscoelastic materials require less accurate measurement of

these parameters.

A final consideration is applicable for the specific

case in which the transient compliance is modeled using the

power law (as in the present study). The power law is

merely a good approximation to the actual transient

compliance function. While the power law is reasonably

accurate for many viscoelastic materials, it cannot provide

an exact match with measured results at all points in time.

Since in practice the viscoelastic response at long times is

generally of greatest interest, it is desirable to provide

the best fit between analytic and experimental results at

long times. Accuracy at long times is often accomplished at

the expense of accuracy at short times, however.

Testing Schedule Selected

The test schedule used during this study was selected
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with several objectives in mind, in light of the above

considerations and the results presented in Chapter IV. The

schedule was keyed towards an accurate measure of the power

law exponent n. The selection process is described below.

Initial estimates for the linear viscoelastic parameters

A o, C, and n were obtained by conducting a few 30 min/60 min

creep/creep recovery tests on a 90-deg specimen of T300/5208

graphite-epoxy. The results of these tests were used in the

sensitivity study presented in Chapter IV, and the estimates

obtained are restated here for convenience

A ° = 0.0978/GPa (0.674 X 10-6/psi)

C = 0.O0210/GPa-min n (0.0145 X lO-6/psi-min n)

n = 0.33

The linear viscoelastic creep response at any time t is

given by eq. 3.4 (with go = gl = g2 = ao = I)

ec(t) = [A° + C tn] o0 (5.1)

Equation 5.1 can also be rearranged to provide an expression

for n, in terms of Ao, C, n, t, and _(t)

 oll
n =

log t

The approximate creep strain expected at 105 minutes for

(5.2)

T300/5208 was calculated using eq. 5.1 and the initial

estimates for A o, C, and n, at a stress level 12.1MPa (1750
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psi). The viscoelastic response was expected to be linear

at this stress level. The approximate creep strain was

calculated as

g(105) = 2313 uin/in

Next, an accuracy of !10% at 105 minutes was specified.

That is, the measured value of n was required to produce a

predicted creep response within 110% of the actual creep

strain at 105 minutes. A !10% error implies a predicted

response at 105 minutes of

g(I05)+i0% = 2544 _in/in

_(I05)_i0% = 2082 _in/in

The error bounds on n can now be calculated using eq. 5.2

n+10% = 0.346

n_10% = 0.310

Since the "exact" value of n is assumed to be 0.33, the

specified _I0_ tolerance on predicted creep strain at 105

minutes requires that the error in n range between -6.1% to

+4.8%. Therefore, the creep time used to determine n must

be long enough such that this difference in n can be

distinguished. As previously discussed, the accuracy in

strain gage measurements is perhaps +5 _in/in. It was
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arbitrarily decided to specify a confidence level in strain

measurement of +20 _in/in for the present study. That is,

the creep time was to be long enough such that a variance of

+20 _in/in away from "exact" behaviour could be measured.

It was reasoned that this rather conservative confidence

level would help to assure an accurate measure of n. The

transient response given by each value of n has been plotted

in Figure 5.1. As indicated a variance of !20 _in/in away

from the response for n = 0.33 occurs at about 480 minutes.

The duration of the creep test chosen for this study was

therefore 480 minutes.

Once the length of the creep test was selected it was

possible to specify a reasonable recovery period. The

predicted recovery curves following 480 minutes of creep at

12 1 MPa are o_ .... in Figure 5 2 Since _..... w....... e material has

been assumed to be linearly viscoelastic, the variance from

the n = 0.33 curve is initially +20 _in/in. After 120

minutes this variance has been reduced to about +13 _in/in.

This was judged to be a reasonable recovery time, and so

recovery strains were monitored for 120 minutes.

In summary, the creep/creep recovery testing cycle used

in this study was keyed towards accurate measure of the

power law exponent n, since a sensitivity analysis had

indicated that errors in long-term predictions would most

likely arise due to errors in n. Based upon the procedure



130

0
CD
o_

\\ ',

0 0 0 0 0

(UL/UL) uLea_S daaa9 _UaLSUeal

0
0

0
0

0

_0 c-

or-

0
E

OI--

0
0
o')

0
0
O,J

0
0

0

0

0

v

t_
O_

o,J

0

0,1
0_

0

o")

r_

(D
&_
_._

0
q--

(D

0
°_

(D

c- LO

_Z. f.-'--

•,-- o

M

S,-

°r,-
Is_



131

C9
CD
CO

'/I
I
I

I
I
I
I
I

I
I
I

I
I

C) _ 0 _

(u.t/u.t) u.tEa:_S ,_aa^0_a_

i
I
I
I
I
I
I
I
I
I

I
I

I
0 _

o_

°_,_
(._

0

P_

0 v

rt_
r_

°r"- I_

v _

V1

Q .r--

a9 _

.r--

0 0

l..U.

C-

¢'_ r'-

C,.l U
_J

o_.,.

M

(D

.,_-.
LI_



132

described above, a 480 minute/120

recovery test cycle was selected.

minute creep/creep

Proposed Test Selection Process

The procedures followed in selecting the creep/creep

recovery test schedule were intended to assure accurate

long-term prediction of viscoelastic response. The test

selected depends to a certain extent upon the material being

studied, in the present case T300/5208 graphite-epoxy. It

is likely that a different test schedule would be selected

if a different material were being investigated. Therefore,

the test selection process followed during this study has

been itemized below. This "standard" procedure would serve

to address those variables which are essential for accurate

long-term predictions.

• Obtain initial estimates for the linear viscoelastic

parameters A o, C, and n through a few relatively short

creep/creep recovery tests at low stress levels.

• Determine the desired maximum time of prediction and

desired accuracy at the maximum time. In the present

study these were 105 minutes and !I0%, respectively.

• Using the initial estimates for A o, C, and n, calculate

the expected "exact" response at the maximum time of

prediction (using eq. 5.1) and the acceptable error

bounds in predicted creep strain at that time.

• Calculate the acceptable error bounds for the power law

exponent n (using eq. 5.2).

• Determine the "confidence" level for the strain

measuring system being used. In the present study,

this confidence level was specified as +20 _in/in.
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• Determine the creep time required to distinguish the
creep response for an n value outside of the acceptable
range in n. In the present study, this creep time was
determined to be 480 minutes, using Figure 5.1.

• Select a recovery period based upon the expected
recovery response after the creep time determined
above. In the present study, the recovery period
selected was 120 minutes, based upon Figure 5.2.

These general guidelines should be especially helpful to

the researcher studying a viscoelastic material which has

not been previously investigated.



VI. ACCELERATED CHARACTERIZATION OF T300/5208

During this study, the accelerated characterization

scheme described in previous chapters was applied to the

T300/5208 graphite-epoxy material system. The viscoelastic

response of unidirectional 90-deg and 10-deg off-axis

specimens was monitored during 480 minute/120 minute

creep/creep recovery tests, conducted at several stress

levels. These tests were used to characterize the

viscoelastic behaviour of the matrix-dominated properties

$22 and $66. A few tests were conducted using O-deg

specimens to measure the fiber-dominated properties SII and

S12. Specific details including specimen fabrication,

equipment used, data collection techniques, typical data

obtained, data analysis techniques, and results of the

short-term analysis will be presented in this chapter.

Specimen Fabrication

Specimens were fabricated from 8-ply panels of

T300/5208. These panels were layed up by hand, using NARMCO

RIGIDITE 5208 Carbon Fiber Prepreg tape with a fiber volume

fraction of 65_. It is desirable to cure composites in an

autoclave, since the resulting composite laminates are

generally of a higher quality than those produced by other

methods. However, the use of an autoclave could not be

134
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arranged within the time frame of the present study, and

therefore the panels were cured using the VPI&SU hot press

facility. The heat and pressure cycle used to cure the

panels consisted of the following steps:

• Initial heatup from room temperatures to 135C (275F),
at an average rate of 2.8C/min (5F/min), at atmospheric
pressure

• Hold temperature at 135C for 30 minutes at atmospheric
pressure

• Apply 6.89 kPag (i00 psig) with platens

• Raise temperature to 179C (355F) at 6.89 kPag and hold
for 120 minutes

• Cool in press to 60C (14OF) at 6.89 kPag

• Remove from press and air-cool to room temperature

Nominal panel dimenslons were 0.i0 cm X 30.5 cm X 30.5 cm

(0.04 in X 12.0 in X 12.0 in).

A problem experienced throughout the program was a

shortage of prepreg tape. The experimental portion of the

program was initiated using prepreg on hand, which had a

fiber volume fraction of 65_. After a significant amount of

testing had been completed, it was learned that additional

prepreg with the same fiber volume fraction was not

available. Rather than repeating all of the tests which had

been conducted up until that time, the program was continued

using the limited amount of materials on hand. This caused

some difficulty with respect to selection of the laminates

used during the long-term creep studies. These problems



136

will be further discussed in Chapter VII.

The tensile specimens were sawed from the panels using a

diamond wheel abrasive disk. Nominal specimen width was 1.3

cm (0.50 inch). Specimen length ranged from 17.8 cm to 33.0

cm (7.0 to 13.0 inches).

It has been shown [20-22,39] that previous thermal

history can dramatically affect the viscoelastic behaviour

of polymer-based composite materials. Therefore, after

being sawed from the panels, all specimens were subjected to

a post-cure thermal treatment. This treatment was intended

to erase the influence of any previous thermal histories,

and to bring all specimens to a common thermodynamic (i.e.,

viscoelastic) reference state. The post-cure consisted of

the following steps:

• Initial heatup from room temperatures to 177C (350F) at
an average rate of 2°6C/min (4.7F/min)

• Hold temperature at 177C for four hours

• Cooldown from 177C to approximately _9C (12OF) at a
closely controlled rate of 2.SC/hr (5F/hr)

• Remove from oven and air-cool to room temperature

After post-cure, all specimens were placed in a desiccator

at a relative humidity of 21% _ 3% until used in testing.

Specimens were strain gaged using gages mounted back-to-

back and wired in series, as described by Griffith, et al

[20]. Using back-to-back gages in series serves two

purposes. First, the effective resistance of the strain gage
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is doubled, which allows the use of a relatively high

excitation voltage resulting in high sensitivity, while

still maintaining low gage current and good gage stability.

Secondly, any effects due to specimen bending are

electrically averaged and therefore removed from the strain

gage signal. Micro-Measurement 350_ WK-series strain

gages were used. The WK gage alloy is especially stable and

suited for use at high temperatures [54]. The gages were

mounted to the specimens using the M-BQnd 600 adhesive

system. This is an elevated-temperature adhesive requiring

a cure temperature ranging from about 75C (175F) for 4 hours

to about 175C (350F) for 1 hour [55]. In the present study,

a cure at 82C (18OF) for 8 hours was used to assure complete

cure of the adhesive while still avoiding any perturbation

of the post-cure thermal treatment.

For 0-deg and 90-deg tensile specimens, uniaxial strain

gages were mounted along the major axis of the specimen,

parallel to the load direction. For lO-deg off-axis

specimens, a 3-element strain gage rosette was used,

oriented as shown in Figure 6.1. All gages were mounted

using a magnifying glass to aid in gage alignment.

Since WK-series gages are provided with preattached

leadwire ribbons, lead wires were soldered to the ribbons

rather than directly to the gage tabs. This avoided placing

the soldering iron tip in direct contact with the specimen,
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which can cause local damage in the form of broken fibers,

damaged epoxy matrix, or both [56]. Micro-Measurements

330-FTE leadwire was used, which is a 3-conductor, stranded

silver-plated copper wire with Teflon insulation, suitable

for use to 260C (500F).

Thermal compensation of the strain gage signal was

accomplished using the dummy gage technique [57]. In this

method, a gaged "dummy" specimen is placed immediately

adjacent to the mechanically-loaded "active" specimen. In

all cases, the dummy specimen was identical to the active

specimen with respect to gage type and gage/fiber

orientation. The two specimens were wired in adjacent arms

of a Wheatstone bridqe circuit. Ideally, the dummy specimen

experiences the same thermal history as the active specimen.

Due to the characteristics of the Wheatstone bridge circuit,

any gage response to temperature is cancelled and the

remaining gage signal is entirely due to the mechanical

load.

Equipment Used

Tensile creep loads were applied using one of three

different dead-weight creep frames. All frames utilize a

lever-arm system to apply the tensile creep load. The

majority of the short-term creep/creep recovery tests were

conducted using an Applied Test Systems (ATS) creep machine
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either ratio

equipped with an ATS

temperature controller.

within +I.IC (!2.0F).

featuring an automatic loading system and load re-leveler.

The lever arm for this frame is adjustable to either a 3:1

or I0:i load ratio. The maximum applied load capacity at

is 88,964 N (20,000 ibf). The frame is

series 2912 oven and series 230

Oven temperatures are maintained to

A few short-term tests were conducted using a Budd creep

frame, also equipped with a ATS series 2912 oven and series

230 temperature controller. The load ratio for this machine

is fixed at i0:I. The maximum rated load for this frame is

26,690 N (6000 Ibf). This frame was used infrequently and

only when the ATS machine was not available.

The long-term laminate creep tests were performed using

a five-station creep frame. This frame was designed and

built in-house during the present study, specifically for

the long-term creep tests. The supporting structure of this

frame is a channel- and I-beam weldment, produced in the

VPI&SU University Machine Shop. Tool steel, surface treated

to a hardness of R 58-60, was used for all knive edges and
c

mating surfaces to reduce the effects of plastic deformation

and friction. Each of the five lever arms has a fixed load

ratio of I0:i, and were designed to apply a maximum load of

13,345 N (3000 lbf) per arm. (Perhaps it should be noted for

further reference that no loads greater than 4448 N were
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applied during the present study.) Five individually

controlled ovens were constructed using sheet steel and

aluminum angles, and were insulated with a 2.5 cm (I.0 inch)

thickness of Carborundum FIBERFAX ceramic insulation. The

interior cavity of each oven is nominally 15.2 cm X 15.2 cm

X 53.3 cm (6.0 in X 6.0 in X 21.0 in). Heat is introduced

using Watlow resistance heating elements and controlled

using Omega model D921 digital temperature controllers.

Temperatures were maintained to within !l.lC (!2.0F) over

the 105 minute creep period.

Strains were measured using either a Vishay series 2100

amplifier and strain gage conditioning unit with MTS model

408 voltmeter (used with either the ATS or Budd creep

frames), or with a Vishay P-350A portable digital strain

indicator with SB-IK ten-channel switch and balance unit

(used with the five-station creep frame). Strain and time

data pairs were logged by hand and subsequently entered into

the IBM mainframe, housed at the VPI&SU Computing Center.

All further data reduction was accomplished using the IBM

mainframe and FORTRAN programs. Strain data were taken with

an amplifier gage factor setting of 2.0, and were

subsequently corrected for actual gage factor and (where

appropriate) for transverse sensitivity effects.
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Selection of Test Temperature

As previously noted, the Schapery theory can be

considered to be a Time-Stress Superposition Principle. A

viscoelastic material can therefore be characterized at a

single temperature through a series of creep/creep recovery

tests at several stress levels.

Time-Temperature Superposition

material may be characterized

This is in contrast to the

Principle, in which a

at a single reference

temperature through a series of creep tests at a common

stress level but at several temperatures. Temperature-

dependence was not considered in the present study, and all

tests were conducted at a single test temperature.

Dramatic viscoelastic response was desired so as to

provide a rigorous check of both the Schapery theory and of

the laminate characterization scheme as a whole. Therefore,

a test temperature approaching the T of the epoxy matrix
g

was required. The T was determined through a series of 5
g

minute creep tests at temperatures ranging from 66C (150F)

to 199C (390F). A 90-deg unidirectional specimen was used

at the relatively low stress level of 11.4 MPa (1650 psi) to

assure a linearly viscoelastic response. The creep strains

at 1 and 5 minutes were recorded, and an "average creep

rate" was defined as

AE _(t) --E(1)
At 4
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Both the 5 minute creep compliance and the average creep

rate have been plotted as functions of temperature in Figure

6.2. As indicated, the 5 minute creep compliance

measurements indicated gave a T of 178C (353F), while
g

average creep rate measurements indicated a Tg of 180C

(356F). This mild discrepancy was considered to be within

experimental error bounds. These results are also in

agreement with results presented elsewhere [II].

A test temperature of 149C (300F) was selected, based

upon Figure 6.2. It was reasoned that adequate viscoelastic

response would occur at this temperature, without severely

reducing specimen strength or rigidity.

Tests of 0-deg Specimens

Two tensile tests were conducted using 0-deg specimens

to determine the fiber-dominated properties Ell and v12 (or

equivalently, SII and S12 ). These properties were assumed

equal in tension and compression. As expected from previous

results [11,18-23], neither Ell nor v12 exhibited

appreciable time-dependent behaviour at a temperature of

149C, and were therefore treated as linear elastic

properties during the laminate analysis. The results

obtained and used in the analysis were

= 132.2 GPa (19.16 X 106 psi)
Ell
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or,

= 0. 273
v12

i

SII = E11
= 7.570 x 10 -12 GPa -I (52.19 x 10 -9 psi -1 )

-v12

S12 = E21
10 -12--= - 2.067 x GPa -I (-14.25 x 10 -9 psi -1 )

The tensile modulus value can be compared to the results of

Kibler; Ell = 136 GPa [II].

Tests of 90-de_ Specimens

The 90-deg tests were used to characterize the

viscoelastic response of the matrix-dominated modulus E22.

The ultimate strength perpendicular to the fibers at 149C

was inititally estimated to be 31.1 MPa (4500 psi), based

upon a parallel study by Zhang [58]. This ultimate strength

was somewhat lower than expected. Sendeckyj et al [59]

report an ultimate strength of 49.6 MPa (7160 psi) at room

temperatures for T300/5208. Therefore, an ultimate strength

of perhaps 41.4 MPa (6000 psi) had been anticipated at a

temperature of 149C. However, during the present study even

the lower strength levels observed by Zhang were not

attained, as all 90-deg specimens failed at stress levels

greater than 20.7 MPa (3000 psi). This failure occurred for
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a total of four specimens, two of which had been used in

previous tests and two of which were virgin specimens. All

failures occurred in the specimen grips rather than in the

strain gage area. These specimens were rather delicate, and

it is possible that they were damaged slightly during gaging

and/or mounting in the grips, although care was taken to be

gentle. Further tests with new specimens were not possible

due to the material shortages mentioned above. It should be

noted that in previous viscoelastic studies at VPI&SU 16-ply

specimens were used rather than 8-ply specimens. Perhaps in

future efforts 16-ply specimens should again be used, since

the increased specimen

durability.

Strain data for

thickness may help to improve

the entire 480 min/120 min

creep/recovery test cycle were obtained at seven stress

levels ranging from 10.5 to 20.7 MPa (1528 to 2997 psi).

For each test, a minimum of 26 creep and 21 recovery data

points were taken, at the nominal times listed in Table 6.1.

Following collection, the data were entered into the IBM

mainframe computer and reduced using either the SCHAPERYor

FINDLEY programs described in Chapter III. An interactive

graphics routine was also written which allowed an immediate

plot of the data and analytic fit. Sample plots are shown

in Figures 6.3-6.5. The entire creep/recovery data set is

shown in Figure 6.3. The solid line represents the analytic
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Table 6.1: Nominal Measurement Times For The 480/120 Minute
Creep/Creep Recovery Tests

Creep Measurement Time
Number Time (minutes)

Recovery Measurement Time
Number Time (minutes)

1 0.5 1 O.
2 1.0 2 O.
3 1.5 3 O.
4 2.0 4 I.
5 3.0 5 I.
6 4,0 6 2.
7 5.0 7 3.
8 7.0 8 4.
9 I0. 9 5.

I0 15. I0 7.
II 20. II I0.
12 25. 12 15.
13 30. 13 20.
14 40. 14 25.
15 50. 15 30.
16 60. 16 40.
17 90. 17 50.
18 120. 18 60.
19 150. 19 80.
20 180. 20 I00.
21 210. 21 120.
22 240.
23 300.
24 360.
25 420.
26 480.

25
5O
75
0
5
0
0
0
0
0
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fit provided by the SCHAPERY program. The transient creep

response is shown in Figure 6.4; i.e., the instantaneous

response has been subtracted from the creep data and only

the transient viscoelastic response is shown. Recovery data

and analytic fit are shown in Figure 6.5. This plotting

routine was used to detect any input errors and as a visual

check of the analytic curve fit.

One difficulty associated with the relatively long 480

minute creep period used in this study was the resulting

long time required for specimen recovery. At the lower

stress levels, the recovery response was complete after a

1-2 day period, and a new test could be initiated. At the

higher stress levels, a considerably longer recovery time

was neccessary; at the highest stress levels a recovery

period of i0 days was required. Also, at these higher

stress levels, a permanent non-recoverable strain was

recorded. The permanent strain following recovery will be

further discussed below. In these cases, recovery was

judged "complete" when the strain measurement did not change

appreciably over a 24 hour period.

Stress-strain curves obtained at 0.5 and 480 minutes

during the creep cycle are shown in Figure 6.6. Results

indicate very slight nonlinear behaviour at stress levels

greater than about 15.6 MPa (2250 psi). This result was not

unexpected, since slight nonlinear behaviour for 90-deg
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specimens of T300/934 had been suspected by Hiel [22],

although the creep/creep recovery cycle he used was not long

enough to distinguish nonlinear behaviour. The results

presented in Figure 6.6 confirm this suspicion and also

raise an interesting question regarding the concept of a

linear/nonlinear distinction in stress level. That is,

while the results obtained at 0.5 minutes indicate linear

behaviour at any stress level, the results obtained at 480

minutes indicate nonlinear behaviour at stress levels

greater than 15.6 MPa. It can be hypothesized that if creep

data had been taken at times greater than 480 minutes

nonlinear behaviour would have been evident at stresses

lower than 15.6 MPa. Therefore, it may be that nonlinear

behaviour occurs at any stress level for T300/5208, but is

not apparent at short times for low stress levels.

From a practical viewpoint, if viscoelastic behaviour is

to be predicted at time t = 0.5 minutes, then nonlinear

effects can be neglected at any stress level. Conversely, if

the prediction is to be made for 480 minutes, then nonlinear

behaviour must be accounted for at stress levels greater

than 15.6 MPa. Thus, the decision as to whether to include

nonlinear effects in an analysis depends upon the desired

length of prediction. This greatly complicates the process

of accelerated characterization, since it implies that

nonlinear effects important at long times cannot be sensed
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with sufficient accuracy at short times. A possible

solution would be to couple the TSSP (i.e., the Schapery

model) with the TTSP, or in other words accelerate the time

scale using both stress and temperature. This approach was

not used in the present study, but is worthy of further

consideration. For this study it was decided to treat data

obtained at stress levels less than or equal to 15.6 MPa as

linear data, and treat data obtained at the higher stress

levels as nonlinear data.

Another factor which complicated the analysis was that

complete recovery was not observed following each test,

indicating an accumulation of damage within the test

specimen. The permanent non-recoverable strains recorded

for the 90-deg specimen are shown in Figure 6.7. As

previously discussed this problem was also encountered by

Hiel [22], and was treated as an offset error in the

recovery data. In the present case the effects of permanent

strain were investigated by comparing the results of five

separate analyses. The linear viscoelastic parameters Ao,

C, and n were first determined using the linear creep data

and the FINDLEY program. Recall that the sensitivity

analysis presented in Chapter IV indicates this to be the

best approach for calculating the power law exponent n.

Next, Ao, C, and n were determined using the SCHAPERY

program and linear creep and uncorrected recovery data. That
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is, the accumulated damage was not accounted for in this

second analysis and the recovery data used contained an

"offset error". This analysis is included to illustrate the

detrimental effects of such errors on the viscoelastic

analysis. In the third and fourth analyses attempts were

made to account for the accumulated damage within the linear

recovery data. Two approaches were used, which will be

referred to as "Method I" and "Method 2". Finally, the

remaining nonlinear parameters go' gl' g2' and a c were

determined using nonlinear data and the SCHAPERY program.

Analysis Using Creep Data

In this section, the results obtained using the program

FINDLEY will be presented. The creep data used were

obtained at stress levels of 10.5, 12.1, 13.9, and 15.6 MPa

(1528, 1748, 2020, and 2263 psi). Note that the creep data

was not corrected for any permanent strain error. The

values obtained for A o, C, and n are shown in Figure 6.8.

The average value and standard deviation for each parameter

were

A = 0.1.062 + 0.00037 ( X I/GPa)
o

= 0.7321 t 0.00252 ( X lO-6/psi)

C = 0.00136 Z 0.00016 ( X I/GPa-min n)

= 0.009372 + 0.00111 ( X 10-6/psi-min n)

n = 0.289 + 0.0158
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Recall that all three of these values are expected to remain

constant with stress. Based upon the analysis presented in

Chapter V, it was hoped that the test cycle selected would

result in an accuracy in n ranging from -6.1% to +4.8% of

the actual value. The standard deviation will be used as an

indication of accuracy; thus possible experimental error in

the value obtained for n is +5.5%. Therefore, the expected

accuracy in n was not quite attained. Admittedly, neither

the number of tests nor the number of stress levels used are

of a statistically valid sample size. Nevertheless, these

results exhibit considerably less scatter than those

obtained using a different creep cycle [21]. The possible

error in C (shown in Chapter IV to be less important than

errors in n) is 111.8%, while the possible error in A ° is

+0.3%.

Analysis With Uncorrected Recovery Data

The Ao, C, and n values obtained using the SCHAPERY

program and uncorrected recovery data are shown in Figure

6.9. As indicated a very wide scatter in both C and n was

encountered. This would be expected based upon the analysis

described in Chapter IV, since the recovery data contains a

large offset error due to accumulated damage. The average

value and standard deviation for each parameter are
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A ° = 0.1068 ± 0.00048 ( X I/GPa)

-6/psi= 0.7363 Z 0.00328 ( X I0 )

C = 0.000986 ± 0.000286 ( X i/GPa-min n)

= 0.006816 ± 0.001970 ( X 10-6/psi-min n

n = 0.342 + 0.0527

The possible error in n and C are therefore _15.4% and

+28.9_, respectively. Note that the estimate for A
-- o

obtained using either FINDLEY or SCHAPERY is essentially

equivalent, since in both cases A is determined using the
o

creep data.

Analysis With Recovery Data Corrected Usinq Method 1

In this analysis, the accumulated damage recorded

following each test was subtracted from the recovery data.

This approach was used by Hiel [22], and will be referred to

as Method I, to distinguish it from an alternate procedure

described in the next paragraph. The A o, C, and n values

calculated using this approach are presented in Figure 6.10.

The average values and standard deviations are

A ° = 0.1057 _ 0.000398 ( X I/GPa)

-6/psi= 0.7288 ± 0.002746 ( X I0 )

C = 0.001813 Z 0.0004186 ( X I/GPa-min n)

= 0.0125 _ 0.002886 ( X lO-6/psi-min n)

n = 0.257 + 0.0258
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The possible error in n and C for this case are _i0.0% and

Z23.1%, respectively. Thus, correcting the recovery data by

Method 1 reduced the scatter in n and C, but not to the

levels obtained by using the creep data.

Analysis With Recovery Data Corrected Using Method 2

Note that since the response is assumed to be linear eq.

3.4 can be used to generate an analytic recovery curve based

upon the creep response. That is, the C and n values

obtained using the creep data (C = 0.009372; n = 0.289) can

be substituted into eq. 3.4 to obtain an expression for the

expected recovery strain at any time t. Based upon this

approach, the recovery curve expected at a stress level of

15.6 MPa is compared with the uncorrected and corrected

recovery data in Figure 6.11. It would appear from this

figure that the difficulty lies in an inaccurate permanent

strain measurement; i.e., the correction used to account for

accumulated damage was too severe, causing the corrected

recovery strains to "overshoot" the expected recovery curve.

Similar calculations indicated an overshoot had occured at

all stress levels. The discrepancy between expected

recovery strains and corrected recovery strains was on the

order of 5-15 _in/in in all cases. While this is a

relatively small error, it has been demonstrated in Chapter
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IV that errors of this magnitude severly distort the results

obtained using recovery data.

These considerations gave rise to a second approach for

correcting the recovery strain, which was to simply adjust

the measured data so as to match with the expected recovery

response as closely as possible. This is not proposed as a

valid experimental technique, since it requires a priori

knowledge of the recovery response. The intent is rather to

4etermine whether the measured recovery data can be "forced"

to agree with the results obtained from creep. This

procedure will be referred to as Method 2. The optimum

offset shift of the recovery data was determined as follows.

The expected recovery response at each stress level was

calculated and subtracted from the measured strain at each

point in time. The difference was defined as an offset

error for that point in time. The average offset error over

the 120 minute recovery period was then calculated for each

stress level and subtracted from the recovery data as

before. The resulting fit between predicted and corrected

recovery strains is illustrated in Figure 6.12 for a stress

level of 15.6 MPa. Similar results were obtained at all

stress levels. Casual inspection would suggest that a very

good correlation between the C and n values calculated using

creep and corrected recovery data would now be obtained.

However, the correlation did not improve and in fact
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slightly worsened. The Ao, C, and n values obtained are

presented in Figure 6.13. The average values and standard

deviations are

A ° = 0.1062 ! 0.000786 ( X I/GPa)

= 0.7324 _ 0.00542 ( X 10-6/psi)

C = 0.001426 _ 0.000472 ( X i/GPa-min n)

= 0.00983 ! 0.00326 ( X 10-6/psi-min n)

n = 0.295 + 0.0401

The standard deviations indicate possible errors for n, C,

and A ° of t13.5%, !33.2%, and !0.74%, respectively.

The reasons for this rather suprising result are not

clear, although by careful inspection of Figure 6.12 a

potential explanation is suggested. Note that for times

less than about I0 minutes the corrected recovery data

points lie slightly below the predicted recovery curve,

while at longer times the data points lie slightly above the

predicted curve. This same pattern existed at the other

stress levels. Thus, the experimental data points describe

a slightly "flatter" curve than predicted by linear

viscoelastic theory. This indicates slightly nonlinear

behaviour, which could perhaps explain the erratic results

obtained. Specifically, a flatter recovery curve indicates

that the gl parameter is greater than 1.0, as discussed in

Chapter III. This reasoning also implies that the recovery



167

LO

v

O0

0

I

m

m

_I'

o o

m

I
0

0

I

l

0

4

0

I

gnlgA

O

o

0
v

kO

c_
anIgA u

I
0
oO

O0

II

I
I
I

o D

0 0

I I
I I

O

I t I I I
_O ,m' O J O CO

O O O _ O

an IgA 3

kO

04

O

O ._-

g')
u')
_J

4_

O

O
O

n---

O
ko

O,--

c_

kO
O
O

E

O

_J

c-
-i,.,-

e-

e-
r_

%

S.

¢-_ ¢',4

._--

*r--

(2.1

•_-- _._

0

4-- 0
0

¢--

._--

,----r-

..

O0

IA.-



168

response is more sensitive to nonlinear effects than is the

creep response, since satisfactory results were obtained

using the creep data and linear theory. This greater

sensitivity to nonlinear effects in the recovery data has

also been observed by Lou and Schapery [35].

Another possible contributing factor would be that the

effects of accumulated damage have not been properly

accounted for. Damage is presumably accumulated through the

formation of voids and/or microcracks which form during the

creep cycle. Such imperfections may occur immediately upon

loading, or may develop gradually during the creep cycle.

In this second case the shape of the creep curve may be

altered due to damage accumulation, ultimately affecting the

calculated values of C and n. Upon unloading, these voids

and microcracks would tend to close and perhaps modify the

shape of the recovery curve as well. The creep/creep

recovery response would therefore depend upon some

combination of viscoelastic, plastic, and fracture

mechanisms. Erratic results may have been obtained because

the Schapery theory does not account for these hypothesized

plastic or fracture mechanisms.

At the least, the above calculations indicate the

extreme sensitivity of n and C to slight errors in the

recovery strain data. This sensitivity tends to confirm the

analysis presented in Chapter IV, where it was concluded
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that stable values for Ao, C and n can best be obtained

using creep rather than recovery data.

Calculation of the Nonlinear Parameters

The final step in the characterization process was to

calculate the nonlinearizing parameters gO' gl' g2' and a c

at stress levels greater than 15.6 MPa. Specifically, these

parameters were calculated at stress levels of 17.2, 19.0,

and 20.7 MPa (2498, 2755, and 2997 psi). A permanent strain

following recovery was also recorded at these stress levels,

so it was neccessary to correct for accumulated damage by

subtracting the permanent strain from the recovery data

(Method I). Note that since the response was nonlinear it

was not possible to calculate an expected recovery response

based solely upon the creep response, and hence it was not

possible to use Method 2 of the previous section to analyze

the data.

The SCHAPERY program was used to obtain best-fit values

for each parameter. The results obtained for go and gl are

presented in Figure 6.1_, as functions of both the applied

normal stress and of the average matrix octahedral shear

(The average matrix octahedral shear stress
stress, _oct"

was discussed in Chapter III.) The go value was calculated

as 1.0 at all stress levels. This implies that the elastic

instantaneous response was linear at all stress levels and
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that the nonlinear behaviour previously noted in Figure 6.6

was due entirely to the viscoelastic response. The gl

values were somewhat erratic; a value of 1.278 was obtained

at an applied stress level of 17.2 MPa, while values of 1.14

and 1.17 were obtained at stress levels of 19.0 and 20.7

MPa, respectively. The results of Hiel for T300/934

indicate that gl is a gently increasing function of stress

[22], so it was assumed that the gl value obtained at 17.2

MPa was in error and was not used in the analysis.

Recall that an expression for gl as a function of _oct

was required in the lamination program VISLAP. Peretz and

Weitzman [50] have characterized the gl parameter for the

structural adhesive FM-73 using an expression of the form

folS2
Io = sI [o0j01" ) !.v

where S I, $2, and o° are material constants determined

experimentally. However, since FM-73 is a highly nonlinear

material, the gl values obtained by Peretz and Weitzman span

a much wider range than in the present case, and the above

expression was not considered compatible with the mildly

nonlinear behaviour observed for T300/5208. Therefore the

following simple bilinear relation was used
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< 6.43 MPa
gl(Toct) = 1.0 , for roct --

1.0 + 0.0875 (r - 6.43), for Toct oct > 6.43 MPa

(6.1)

Equation 6.1 is shown as a dashed line in Figure 6.14.

Values obtained for the g2 and ao parameters are shown

in Figure 6.15. No distinct pattern emerged for the g2

parameter. Although a similar variation in g2 with stress

was observed by Hiel [22], it was not clear whether this

deviation was due to some physical mechanism or due to

experimental error. Therefore, g2 was set equal to 1.0 at

all stress levels. The a ° value decreased dramatically

after initiation of nonlinear behaviour. This distinctive

pattern has also been observed by other researchers

[22,35-37,50]. The a ° parameter was related to _oct using

the exponential function, following the approach used by

Peretz and Weitzman [50]. The equation used in VISLAP was

i , < 6.43 MPa

"i.0 for Toc t _

ao(T°ct) = -0 247 - 6.43)
e " (Toct , for T

oct
> 6.43 MPa

(6.2)

It might be noted that an exponential dependence of a with
c

stress has received some theoretical justification [35].

Equation 6.2 is shown as a dashed line in Figure 6.15.
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Tests of 10-deg Specimens

The 10-deg tests were performed to characterize the

viscoelastic response of T300/5208 to shear stress.

Creep/creep recovery tests were performed at eleven shear

stress levels ranging from 2.9 to 32.5 MPa (426 to 4715

psi). It is well known that end constraints can severely

distort the desired uniaxial stress field when testing off-

axis tensile specimens, particularily near the specimen

grips [60]. Therefore, the 10-deg specimens were 30 cm (12

inches) in length, resulting in a grip-to-grip distance of

approximately 23 cm (9.0 inches). The effective length-to-

width ratio was thus 18, which is considered adequate for

tensile testing. The 480/120 minute creep/creep recovery

test cycle was again utilized, and strain data were recorded

at the nominal times previously listed in Table 6.1. A

3-element strain gage rosette was used to measure three

independent normal strains. The rosette orientation has

been noted in Figure 6.1. For the rosette/fiber orientation

used, the shear strain _12 along the 10-deg fiber direction

can be calculated using the strains measured by gages a, b,

and c as

r12 = -0.598 _a - 0.684 _b + 1.282 _c
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Note that a different relationship is obtained if an

alternate fiber angle or an alternate rosette/fiber

orientation is used [22,47]. The shear stress _12 along the

fiber direction is related to the applied normal stress ox
by

_12 = -0.171 ox

It was found that for an applied tensile normal stress,

gages a and b measured tensile (positive) strains, while

gage c measured compressive (negative) strains. Thus, both

[12 and _12 were negative; for simplicity the results

obtained will be presented herein as positive values.

Stress-strain curves obtained at 0.5 and 480 minutes

during the creep cycle are presented in Figure 6.16. A

comparison of Figs. 6.6 and 6.16 indicates that nonlinear

effects were much more significant in the case of shear

stress than for the case of normal stress. Apparent linear

behaviour with shear was exhibited at the lowest three

stress levels of 2.9, 6.1, and 8.8 MPa (426, 878, and 1279

psi), while nonlinear behaviour was observed at higher

stress levels. It can again be hypothesized that nonlinear

behaviour would have been observed at stress levels less

than 8.8 MPa if the creep response had been monitored for

times greater than 480 minutes. Nevertheless, the data

obtained at shear stress levels of 8.8 MPa or less were
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treated as linear data, while data obtained at higher stress

levels were treated as nonlinear data.

Permanent strains apparently due to accumulated damage

were again observed. The permanent strains recorded by each

of the three gages are presented in Figure 6.17. As

indicated a different permanent strain was recorded by each

gage. The magnitude of permanent strain roughly reflects

the magnitude of the transient response sensed by each gage.

That is, gage c recorded both the largest transient response

and the largest permanent strain, while gage b recorded both

the smallest transient response and the smallest permanent

strain. Note also that a large permanent strain was

measured by gage c, even though this gage was subjected to

compressive strains during the creep cycle. Since the

formation of matrix voids and microcracks is not normally

associated with compressive strain fields, the permanent

strains observed cannot be attributed entirely to damage

accumulation in the form of voids or microcracks. A

permanent change in the matrix molecular structure must

therefore have occurred during the creep cycle, as suggested

by Hiel et al [22].

The shear data were analyzed using the conventional two-

step process. First a linear analysis was performed using

the data obtained at the lowest three stress levels,

resulting in calculated values for the linear viscoelastic
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parameters Ao, C, and n. The remaining nonlinear parameters

were then calculated using the nonlinear data obtained at

the higher stress levels.

Linear Analysis

A linear analysis was performed using the creep data

obtained at shear stress levels of 2.9, 6.1, and 8.8 MPa.

Unsatisfactory results were obtained for the lowest stress

level of 2.9 MPa. The C and n values calculated using this

data set were 0.01297 X I/GPa-min n and 0.083, respectively,

which do not compare well with the results listed below,

which were obtained at the other two stress levels. This

discrepancy was probably due to the very low viscoelastic

response, since the total transient shear strain measured

over the 480 minute creep period was only 30 _in/in.

Therefore, it was assumed that accurate measurement of C and

n could not be obtained using this data set, and the above

values were not used in the analysis.

The average values for A o, C, and n calculated using the

creep data obtained at 6.1 and 8.8 MPa were

A ° = 0.1561 _ 0.001115 ( X I/GPa)

= 1.0761 + 0.00769 ( X 10-6/psi)

C = 0.00332 + 0.000140 ( X I/GPa-min n)

= 0.0229 t 0.000962 ( X 10-6/psi-min n)

n = 0.247 + 0.0214
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Possible errors in the values for Ao, C, and n are therefore

Z0.71%, _4.20_, and ±8.66_, respectively. Note that the

desired error bound on n was not achieved. The reasons for

the relatively high error bound are not clear, but may again

be associated with the relatively low viscoelastic response

at these stress levels. The data appear to be very uniform,

and no permanent damage was recorded at these stress levels.

In any case the nonlinear analysis presented below was

successfully based upon these results.

Nonlinear Analysis

A nonlinear analysis was performed using data obtained

at eight shear stress levels ranging from 11.8 to 32.5 MPa

(1712 to 4715 psi). The recovery data were corrected by

subtracting the permanent strains recorded at each stress

level. The values obtained for the go and gl parameters are

presented in Figure 6.18, as functions of both the applied

load and of the average matrix octahedral shear stress. The

go parameter was found to deviate from a value of 1.0 at all

shear stress levels greater than 14.7 MPa (2132 psi). This

indicates that the nonlinear behaviour observed is due to

both a nonlinear elastic response and a nonlinear

viscoelastic response in shear. This is in contrast to the

results for normal stresses, where go was found to be 1.0 at
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all normal stress levels, i.e., the elastic response was

linear at all normal stress levels. A bilinear fit of the

go data for use with the VISLAP program resulted in

< 12.05 MPa

1.0 , for Toc t _

g0 (Toct)=

1.0 + 5.48 x 10 -3 (Toc t - 12.05), for Toc t > 12.05 MPa

The gl parameter was also found to be stress dependent.

A bilinear fit of the gl data resulted in

< 7 23 MPa

"i.0 , for Toc t _ .

gl (Toct) =

1.0 + 9.79 x 10-3 (_oct - 7.23), for Toct > 7.23 MPa

The bilinear curve fits of the go and gl parameters are

shown in Figure 6.18 as solid and dashed lines,

respectively.

The results obtained for the g2 parameter are presented

in Figure 6.19. This parameter was found to be most

sensitive to shear stress, ranging from a value of 1.0 at

linear stress levels to about 3.6 at a shear stress of 32.5
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MPa (4715 psi). The g2 data were also fit using a bilinear

function, resulting in

g2octIi° for°ct723 a
.0 + 0.124 (Toc t - 7.23), for • > 7.23 MPa

oct

This function is shown as a solid line in Figure 6.19.

The results obtained for a ° are presented in Figure

6.20.
The data for a ° exhibited considerable scatter, and

no truly distinctive pattern emerged. As previously noted

the a° function was expected to exhibit an exponential

dependence with stress. Therefore, the data were

characterized using the following exponential function

I < 14.5 MPa

1.0, for Toc t _

so(Toe t) =

-0.0340 (Toct - 14.5),e for roct > 14.5 MPa

The above relation is shown as a solid line in Figure 6.20.
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VII. LONG TERM EXPERIMENTS

One of the major objectives of this study was to obtain

experimental measurements of the long-term creep compliance

of composite laminates. In previous studies at VPI&SU,

compliance measurements were obtained for a maximum time of

104 minutes (6.9 days). It was felt that measurements at

longer times were required so as to provide a more rigorous

check of the long-term predictions obtained via the

accelerated characterization scheme described in previous

chapters. The efforts to obtain these long-term

measurements will be described in this chapter.

Selection of the Laminate Layups

Two distinct laminate layups were to be tested during

the long-term tests. The laminates were selected such that

the stress state applied to the individual plies would

differ significantly, so as to produce two distinct

viscoelastic responses. A constraint on laminate selection

was imposed by the material shortages previously mentioned.

Due to these shortages, all long-term specimens had to be

fabricated from a single [0/30/-60/0] s panel of T300/5208

graphite-epoxy. This panel was fabricated in the VPI&SU hot

press facility, using the same NARMCO RIGIDITE 5208 prepreg

tape and heat/pressure cycle used to fabricate the

186
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unidirectional specimens. Different laminate layups could

only be obtained by sawing specimens from the parent panel

at various angles away from the 0-deg fiber directions.

Thus, potential laminate layups for the tensile specimens

were defined by an angle $ ranging from 0 to 180 degrees, as

depicted in Figure 7.1.

To aid in laminate selection, an analysis of the

potential layups was performed using conventional (elastic)

CLT. The results of this analysis are presented in Figure

7.2, where the transverse normal stress and shear stress

induced in each ply as a function of the angle B are

plotted. The laminate layups selected for testing are

denoted by the dashed lines in Figure 7.2. The first was a

[I00/-50/_0/I00] s laminate, or equivalently, a

[-80/-50/_0/-80] s laminate. This laminate was selected

because all plies were subjected to relatively high

transverse normal and shear stresses, as indicated in Figure

7.2. The [-80/-50/40/-80] s laminate will be referred to as

laminate "A". The second layup chosen was a [20/50/-40/20] s

laminate. This layup results in relatively high shear

stresses in all plies but relatively low transverse normal

stresses. The [20/50/-%0/20] s laminate will be referred to

as laminate "B"

Static tensile tests to failure at a temperature of 149C

(300F) were conducted for both laminates. Ultimate
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Figure 7.1- Layup of [0/30/-60/0] Panel, Indicating Potential
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strengths of 136 and 271 MPa (19660 and 39320 psi) were

measured for laminates A and B, respectively. Thus, the

ultimate strength of laminate B was approximately twice as

high as that of laminate A. The long-term creep tests were

conducted at stress levels of 76 and 156 MPa (II000 and

23000 psi) for laminates A and B, respectively. These

stress levels correspond to roughly 60_ of the laminate

static ultimate strengths.

As mentioned in Chapter VI, a five-station creep frame

was used during the long-term study. Hence it was possible

to test five specimens concurrently. Three specimens of

laminate A and two specimens of laminate B were tested.

Drift Measurements

The long-term specimens were strain gaged with gages

mounted back-to-back, as described for the unidirectional

specimens in Chapter VI. Strains were measured using a

Vishay P-350 portable digital strain indicator and a SB-IK

ten channel switch and balance unit. An initial concern was

that electronic "drift" of the gage signal might occur over

the 105 minute test period. Drift can result from a variety

of factors, including a change in strain gage or leadwire

resistance, a change in strain gage gage factor, or

amplifier instabilities. Since the laminate creep rate was

expected to be rather low at long times, it Has possible

that drift could mask the actual viscoelastic response at
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long times. The effective drift rate was therefore

monitored during testing by placing separate Wheatstone

bridge "drift" circuits within three test ovens, immediately

adjacent to the mechanically-loaded tensile specimens. The

drift specimens were gaged and wired exactly as the tensile

specimens. At the start of the creep test, the drift

circuits were balanced to zero, and the output of each

circuit was monitored throughout the test.

Two of the three circuits indicated very low drift.

After 105 minutes one had measured a total drift of 17

_in/in, while the second had measured 35 _in/in, indicating

an average drift rate of 0.37 _in/in/day. The third drift

circuit initially indicated a very low drift rate as well.

However, after about 20000 minutes (5.5 days) substantially

higher (and unreasonable) drift rates were observed. This

third circuit finally failed after 57900 minutes (40 days).

The final reading taken from this circuit was 734 _in/in,

which was of the same magnitude as the total transient

response measured until that time for the loaded specimens.

Thus, it is concluded that the high drift rate indicated by

this circuit was due to a faulty strain gage or solder

joint, and the data obtained from this circuit were

discarded.

The two drift circuits which did survive the total test

period indicated that drift might account for perhaps 20-50
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_in/in of the transient response recorded over the 105

minute period. On the other hand, the transient reponse was

on the order of I000 _in/in. The effects of drift were

therefore estimated to be less than 5_ of the transient

response, and were neglected during the data reduction and

analysis.

Specimen Performance

As described above, three specimens of layup A and two

specimens of layup B were tested. After initiation of the

long-term tests, two of the specimens of layup A apparently

failed, the first after 14960 minutes (10.4 days) and the

second after 46915 minutes (32.6 days). Since the ovens are

not equipped with windows, it was not possible to view the

specimens from outside of the test ovens. It was also

undesirable to open the ovens for inspection since the other

tests would likely be disturbed. Therefore, the "failed"

specimens were left undisturbed for the entire 105 minute

testing period. However, upon completion of the test it was

discovered that these specimens had not failed but rather

had merely slipped out of the upper specimen grips. In

retrospect, it would have been advisable to use pins through

the grips and specimens to prevent such slippage. Pins were

used to prevent slippage of the B specimens, since these

were tested at a much higher stress level. Short-term tests

had been conducted at the specimen A stress level (76 MPa)
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and no slipping had been observed. Therefore, slippage was

not expected.

The third A specimen remained loaded for the entire 105

minute test period, but the strain gage circuit for this

specimen failed after 34895 minutes (24.2 days). Reasonable

strain measurements were obtained for this specimen until

shortly before gage failure. Inspection following test

completion revealed that the solder joint bonding the

preattached leadwire ribbon to the gage tab had failed.

Due to these mechanical and electrical difficulties,

results for the A laminate were obtained for a maximum time

of 46915 minutes. While this was far short of the intended

105 minute test period, it was still a major increase in

previous long-term test times.

Data for the two B laminates were obtained for the

entire test period. Deformation of the B specimens occurred

in a smooth and uniform manner, with no indication of any

gage failures or excessive gage drift. The measured results

for both the A and B laminates will be compared to the long-

term response predicted by the program VISLAP in the

following chapter.



VIII. COMPARISON BETWEEN PREDICTION AND MEASUREMENT

In previous chapters, the accelerated viscoelastic

characterization of unidirectional specimens of T300/5208

graphite-epoxy was described. During characterization, a

series of creep/recovery tests were performed at several

stress levels and at a temperature of 149C (300F), using

both 90-deg and 10-deg off-axis specimens. These short-term

results may be used in conjunction with the lamination

program VISLAP to provide predictions of the long-term

viscoelastic response of T300/5208 composite laminates of

arbitrary layup. To check the accuracy of these

predictions, long-term creep tests were conducted using

specimens with two distinct layups. Laminate A, consisting

of a [-80/-50/40/-80] s layup, was selected because for this

layup all plies are subjected to relatively high transverse

normal and shear stresses. Laminate B, consisting of a

[20/50/-40/20] s layup, was selected because for this layup

all plies are subjected to relatively high shear stresses

but relatively low transverse normal stresses. The ultimate

strength of laminate B was slightly greater than twice that

of laminate A. Both laminates A and B were tested at creep

stress levels of approximately 60_ of ultimate; laminate A

was tested at 76 MPa (II,000 psi), while laminate B was

tested at 156 MPa (23,000 psi). The viscoelastic response

194
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of laminate A was expected to be significantly greater than

that of laminate B.

The predicted and measured compliances for laminates A

and B are presented in Figures 8.1 through 8.4. The

comparison for laminate A is made in Figures 8.1 and 8.2,

where the vertical compliance scale in Figure 8.2 is

expanded relative to Figure 8.1, to provide a clear

comparison between theory and experiment. The corresponding

comparison for laminate B is presented in Figures 8.3 and

8.4. The comparison is similar for both laminates, in that

a reasonably accurate prediction of the instantaneous

(elastic) response was obtained, but at increased times the

predicted response falls below the measured response. For

laminate A the average measured compliance at 14960 minutes

(the longest time at which all three A laminates were still

functional) was approximately i0_ higher than predicted.

Figure 8.1 indicates that at longer times the differences

between the average and predicted response would have been

greater still. For laminate B, the average measured

compliance at 105 minutes was approximately 12_ higher than

predicted.

Recall that a 480 minute creep time was used during the

accelerated characterization tests using unidirectional

specimens. The Schapery theory was applied to these data,

and in each case the predicted and measured response
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compared favorably. Typical results have been presented in

Figures 6.3-6.5. It had therefore been anticipated that a

good comparison for the laminates would be achieved over at

least this shorter time period. Inspection of Figs. 8.2 and

8.4 indicates discrepancies between the slopes of the

measured and predicted compliance curves even at short

times, however. Although the magnitudes of the predicted

and measured responses at short times are reasonably close,

this simply reflects the accuracy of conventional (elastic)

CLT. Thus, the error observed is mainly due to an

inaccurate modeling of the laminate viscoelastic response.

The long-term laminate tests were conducted using a five

station creep frame which had been fabricated in-house. The

short-term tests on the other hand were conducted using a

commercially available single station ATS creep frame. The

test ovens used with the five station frame were known to

produce relatively high thermal gradients, as compared to

the ATS test oven. Therefore, it was suspected initially

that the long-term specimens had been subjected to test

temperatures higher than the intended test temperature of

149C, which could account for the discrepancies observed

between predicted and measured response. However this is

considered unlikely for two reasons. First, the oven

control thermocouple was mounted to within about 0.64 cm

(0.125 inch) of the strain gage site on each of the
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mechanically loaded specimens. Even if significant thermal

gradients existed along the length of the specimens, the

material in the vicinity of the strain gage site was

maintained at a temperature very near 149C. Also, nominal

specimen thicknesses were 0.I0 cm (0.04 inch), and so

significant through-thickness thermal gradients were

unlikely. Secondly, there was little discrepancy between

predicted and measured results in initial elastic response.

If the long-term test temperature had been appreciably

higher than desired, a poor comparison between predicted and

measured elastic response would have been observed.

Note that the measured viscoelastic response recorded

for both laminates is very consistent and uniform from

specimen to specimen. The experimental curves could be

shifted up or down to form a distinct response curve for

each laminate type. Discrepancies are due for the most part

to small differences in the inital elastic response. This

repeatable viscoelastic response from specimen to specimen

as well as the very low strain gage drift rates previously

noted tends to increase confidence in the measured results.

Based upon these observations, it must be concluded that

some mechanism impacting the viscoelastic response of

composite laminates has not been properly accounted for in

the VISLAP analysis. It is possible that the viscoelastic

parameters determined during the short-term tests were
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calculated in error, causing discrepancies at long times.

This would not explain the errors at short times, however.

One portion of the present analysis which may be suspect

is the manner in which the effects of biaxial stress fields

have been accounted for. Recall that the average matrix

octahedral shear stress has been used to account for such

stress interactions, using a mechanics of materials approach

to determine the average matrix stresses. Perhaps this

approach is too simple to characterize the effects of the

complex three-dimensional stress state which exists at the

micromechanics level at all fiber/matrix interfaces. The

problem may be further accentuated at interfaces between

alternating plies within the composite laminate.

Another area of concern is the accumulation of damage

during the creep process, which has been observed during

both the present study and in previous efforts [22].

Evidence suggests that this permanent damage is due to both

the formation of voids and microcracks within the composite

matrix material and permanent changes in the matrix

molecular structure. It has not been possible to correct

the unidirectional creep data for damage accumulation,

although an attempt was made to correct the unidirectional

recovery data by subtracting out any permanent strains

recorded. A portion of the creep response is therefore due

to viscoelastic mechanisms, while a portion is presumably
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due to fracture mechanisms. This implies that the

viscoelastic parameters calculated using the creep data may

reflect to some extent the initial damage state of the

specimen as well as the amount of damage accumulated during

testing. This problem could be alleviated somewhat if the

unidirectional specimens were mechanically conditioned prior

to testing, but as previously noted this would not

correspond to a practical situation. Furthermore, the

damage which occurs in a unidirectional composite specimen

is not necessarily representative of the damage which occurs

in a composite laminate. Laminate damage may occur in

various combinations of matrix cracking, fiber-matrix

_-_-- =-- delamination ....... p ,_=__, u_cw_ _±_ or local fiber

breakage. Many of these failure modes do not occur in

unidirectional specimens. The type and extent of damage

which occurs in a laminate depends upon stacking sequence,

fabrication techniques, geometry, applied loads, and loading

history [61,62]. Due to these effects, it may not be

possible to characterize damage accumulation within a

laminate based solely upon results obtained from

unidirectional specimens.

Finally, note that the VISLAP analysis is based upon

CLT, with slight modification to account for viscoelastic

behaviour. If the analysis is to be valid, the principal

assumptions associated with CLT must be satisfied. Namely,
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the plane stress assumption and the Kirchoff hypothesis.

Thus, interlaminar shear deformations are not considered in

the VISLAP analysis. As a result, laminates with three or

more fiber directions possess a theoretical upper bound on

compliance, as pointed out by Dillard et al [22]. In

practice, however, laminates may undergo significant

viscoelastic interlaminar shear deformations and

subsequently may have no upper bound on compliance. This

shortcoming could be resolved if some method to integrate

interlaminar shear deformations within lamination theory

could be formulated. The only alternative would be to

discard the present approach and utilize a more

sophisticated (and more expensive) method such as the finite

element technique.



IX. SUMMARY AND RECOMMENDATIONS

Summary of Results

In this study an accelerated characterization technique

was applied to T300/5208 graphite-epoxy composites. The

study utilized a characterization procedure previously

developed at VPI&SU. The basic concept is to use short-term

test data, obtained from unidirectional specimens, to

predict the long-term behaviour of composite laminates of

arbitrary layup. Previous efforts had focused exclusively

on the T300/934 graphite-epoxy material system. Therefore,

the T300/5208 material system was selected for use in the

present study, to determine if the accelerated

characterization scheme could be confidently applied to

materials other than T300/934. Improvements in the

characterization scheme were also implemented during this

study, in the form of a more accurate viscoelastic

compliance model and in improved short-term testing

procedures.

Each of the six program objectives listed in Chapter I

were achieved during the course of the study. First, the

Schapery nonlinear viscoelastic theory was integrated with

the accelerated characterization scheme. A recursive

relationship was developed, based upon the Schapery theory.

2O5
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This expression gives the nonlinear viscoelastic response at

time tj, following j-steps in stress. This allows

calculation of the nonlinear viscoelastic response to a

complex uniaxial load history. The complex load may be

approximated to any degree of accuracy by using discrete

steps in stress. The recursive relationship was integrated

with an existing lamination computer program called VISLAP,

allowing predictions of the long-term viscoelastic response

of composite laminates.

The impact on long-term predictions induced by an error

in one of the seven Schapery viscoelastic parameters was

also investigated. The approach used was to calculate the

predicted response using an "incorrect" value for the

parameter of interest but the "correct" value for all other

parameters. The prediction calculated using the erroneous

parameter was then compared with the exact response. It was

concluded that in the present case long-term predictions

were most sensitive to error in the power law exponent n.

It was noted however that this conclusion is contingent upon

the length of prediction desired as well as the viscoelastic

properties of the specific material being investigated. The

above conclusion was based upon typical properties of

T300/5208 and a maximum prediction time of 105 minutes. It

is recommended that a similar analysis be performed if a

different material is studied or if different prediction
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times are required. However, as a general rule, long-term

predictions are most sensitive to errors in n.

The data reduction techniques used to calculate the

linear viscoelastic parameters Ao, C and n were also

investigated. It was shown that in theory these parameters

can be calculated using either linear creep or linear

recovery data, i.e., the use of either creep or recovery

data is theoretically equivalent. Consideration was then

given to the type of experimental strain measurement errors

likely to occur in practice. It was found that the power

law exponent was sensitive to even small offset errors in

recovery data, but insensitive to offset errors in creep

data. Small offset errors in the recovery data were

considered likely due to damage accumulation and slight

strain gage zero drift _,,_ +_...... _ _,,e creep cycle. Therefore,

it was concluded that the linear viscoelastic parameters

should be calculated using creep data.

A short-term creep/recovery testing cycle was selected

which was keyed towards an accurate measure of the power law

parameter n. The testing cycle was based upon strain gage

accuracy and sensitivity, the expected viscoelastic response

for T300/5208 at 149C, and a specified prediction accuracy

of _I0_ at the maximum prediction time of 105 minutes.

These considerations led to the selection of a 480/120

minute creep/recovery testing cycle. The concepts used in
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selecting this cycle were also collected and listed as a

proposed standard test selection procedure. This standard

process should provide useful guidelines to the researcher

studying a viscoelastic material which has not been

previously investigated.

The 480/120 minute creep/recovery cycle was used to

characterize the viscoelastic response of unidirectional

specimens of T300/5208 graphite-epoxy. The viscoelastic

response to transverse normal stress was characterized using

90-deg off-axis tensile specimens, while the response to

shear stress was characterized using 10-deg off-axis tensile

specimens. For the transverse case, nonlinear behaviour was

observed at stress levels greater than about 15.6 MPa (2250

psi). However, it was also noted that nonlinear behaviour

may occur at lower stress levels but may not become apparent

for very long times. For the case of shear stress nonlinear

behaviour was observed at stress levels greater than about

8.8 MPa (1279 psi). Nonlinear effects were much more

significant in the case of shear stress than in the case of

transverse normal stress.

Predictions obtained using the program VISLAP were

compared to measured results for two distinct laminate

layups. Comparisons were made for a maximum time of 105

minutes. It was found that although the predicted

instantaneous response compared well with measured results,
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the predicted viscoelastic response was significantly less

than the measured viscoelastic response. Thus, the

predicted response was non-conservative. The discrepancy

between theory and experiment is believed to be due to an

insufficient modeling of stress interaction effects within

individual plies, to damage accumulation within individual

plies, and/or to interlaminar shear deformations which

develop during the viscoelastic creep process.

Although the comparison between theory and experiment

obtained during this study is far from exact, it is believed

that the fundamental approach used is valid. The

accelerated characterization of composite laminates is a

difficult problem, involving elements of lamination theory,

nonlinear viscoelasticity, and fracture mechanics, among

others. Accelerated characterization is an important

research topic, however, due to the potential long-term

viscoelastic response of composite laminates. A variety of

load-bearing structural components fabricated from

composites are being introduced into the marketplace. It is

therefore important that the long-term viscoelastic response

of composites be well understood and anticipated at the

design stage.

Recommendations

A major question during application of the Schapery
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theory in the present study was how to account for permanent

damage. Damage has been attributed at least in part to the

formation of voids and microcracks in the composite matrix

material during creep. These voids and microcracks are in

turn due in part to the highly heterogeneous nature of

composites at the micromechanics level. Complex three

dimensional stress states exist near fiber-matrix interfaces

and near free edges, resulting in matrix cracks at applied

stress levels far below the effective ultimate strength of

the composite. It is believed that problems with damage

accumulation could be minimized by using a "simpler"

material, i.e., a homogeneous, initially isotropic,

nonlinear viscoelastic material. Also note that in the

present study the validity of the long-term predictions of

the Schapery theory has been obscured since the Schapery

results were not used directly but rather were combined

using lamination theory to predict the long-term response of

a laminate. Therefore, it is suggested that portions of

this study be repeated with a "simple" material.

Specifically, it is suggested that the Schapery analysis be

applied as described herein to a homogeneous viscoelastic

material, e.g., polycarbonate, and compared with long-term

measurements. Such a study would indicate the level of

accuracy possible using accelerated characterization

techniques, and if successful would confirm that the
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difficulties in long-term prediction encountered herein were

due to the laminate analysis and not due to the short-term

characterization process. Alternatively, the Schapery

theory could be validated by predicting the response to a

time-dependent loading history such as a ramp loading

function or a low-frequency sinusoidal loading function.

Response to such a load history could be approximated using

the recursive relationship presented herein (eq. 3.10), or

by integrating the Schapery single-integral expression (eq.

3.1) directly. If this latter approach were used a closed-

form solution to eq. 3.1 may not be obtainable, requiring

numerical integration. Peretz and Weitsman have used this

approach in their studies on FM-73 [50].

In the present study the average matrix octahedral shear

stress, _oct' has been used to account for the effects of

biaxial stress states on the viscoelastic response, where

_oct was calculated using a mechanics of materials model.

Although this approach has been used in previous studies

[21,35], to the author's knowledge the validity of this

model has not been confirmed. It is suggested that creep

tests be conducted using a biaxial loading state, e.g.,

static loads applied both parallel and perpendicular to the

fiber direction. Although biaxial loading would be more

difficult to apply than uniaxial loads, the test results

would directly prove or disprove the average matrix
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octahedral shear stress model. An alternate approach would

be to use uniaxial test results for several different off-

axis tensile specimens. In this case, the ratio of the

loads applied parallel and perpendicular to the fibers is

fixed by the specimen fiber angle. Although these tests

would be much easier to perform than an externally applied

biaxial load test, the selection of load ratios would be

somewhat restricted.

A final recommendation involves possible interlaminar

shear deformations which may occur during the viscoelastic

creep process. A finite element analysis should be

conducted for a few laminates to determine the contribution

to creep due to interlaminar shear strains. If interlaminar

effects are appreciable these must be incorporated into the

CLT analysis. Otherwise, the relatively simple and

inexpensive analysis possible using VISLAP must be replaced

with a more complex and expensive procedure, probably based

upon a finite element analysis of each laminate considered.
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